Coffin–Lowry syndrome: Difference between revisions

From WikiMD's Wellness Encyclopedia

CSV import
 
No edit summary
 
Line 1: Line 1:
{{Infobox medical condition (new)
{{Short description|Rare X-linked genetic disorder with intellectual disability and skeletal abnormalities}}
| name            = Coffin–Lowry syndrome  
{{Infobox medical condition
| image          =
| name            = Coffin–Lowry syndrome
| caption        =
| synonyms        = '''CLS''', '''Progressive intellectual and skeletal syndrome'''
|
| image          = [[File:RSKActivity.png]]
| pronounce      = 
| caption        = RSK2 controls the activity of proteins crucial for normal cellular function
| field          =
| field          = [[Medical genetics]], [[Neurology]], [[Pediatrics]]
| synonyms        = 
| symptoms        = [[Intellectual disability]], [[kyphoscoliosis]], [[growth retardation]], [[facial dysmorphism]], [[hypotonia]], [[seizures]], [[cardiac abnormalities]]
| symptoms        =  
| complications  = [[Hearing loss]], [[visual impairment]], [[cardiomyopathy]], [[scoliosis]]
| complications  =  
| onset          = Infancy or early childhood
| onset          =  
| duration        = Lifelong
| duration        =  
| types          =  
| types          =  
| causes          =  
| causes          = [[Mutation]]s in the ''[[RPS6KA3]]'' gene
| risks          =  
| risks          = Family history of CLS
| diagnosis      =  
| diagnosis      = Clinical examination, [[genetic testing]]
| differential    =  
| differential    = [[Fragile X syndrome]], [[Angelman syndrome]], [[Lujan–Fryns syndrome]]
| prevention      =  
| prevention      = Genetic counseling
| treatment      =  
| treatment      = Supportive care, physical therapy, speech therapy, educational support
| medication      =  
| medication      = As needed for seizures or cardiac issues
| prognosis      =  
| prognosis      = Variable; males typically more severely affected than females
| frequency      =  
| frequency      = 1 in 50,000 to 1 in 100,000
| deaths          =  
| deaths          = Rare, often related to severe cardiac or neurological complications
}}
}}
'''Coffin–Lowry syndrome''' is a [[genetic disorder]] that is [[X-linked dominant]] and which causes severe mental problems sometimes associated with abnormalities of growth, cardiac abnormalities, [[kyphoscoliosis]], as well as auditory and visual abnormalities.


==Genetic Basis==
'''Coffin–Lowry syndrome''' ('''CLS''') is a rare [[X-linked dominant]] [[genetic disorder]] characterized by [[intellectual disability]], [[skeletal abnormalities]], [[delayed development]], and distinctive [[facial features]]. The condition is more severe in males due to their single X chromosome and typically presents during infancy or early childhood.
Coffin Lowry Syndrome is an X-linked disorder resulting from loss-of-function mutations in the RPS6KA3 gene, which encodes RSK2 (Ribosomal S6 Kinase 2). Multiple mutations have been identified in RPS6KA3 that can give rise to the disorder, including missense mutations, nonsense mutations, insertions and deletions.
Individuals with CLS rarely have affected parents , suggesting that most incidents arise from de novo mutations in the germline.  The lack of an inheritance pattern may be due to the fact that affected individuals are unlikely to parent children.  In 20-30% of cases, however, there is a family history of disease. In these cases, the disorder is typically inherited from the maternal parent.
Because RPS6KA3 is located on the X chromosome, males (who possess only one copy of the X chromosome) display more severe symptoms than females.  Affected females usually possess one mutated copy of the RPS6KA3 gene and one wild type copy. Random inactivation of one copy of the X chromosome in females mitigates the impact of possessing a mutant allele. Occasionally females are born with two mutated alleles. In these cases the symptoms are as severe as in males with the disease.<ref>Marques Pereira, P., Schneider, A., Pannetier, S. et al. Coffin–Lowry syndrome. Eur J Hum Genet 18, 627–633 (2010). https://doi.org/10.1038/ejhg.2009.189</ref>


==Epidemiology==
== Genetic Basis ==
The prevalence of CLS is uncertain due to the rarity of the disease, but CLS is estimated to affect between 1 in 50,000 and 1 in 100,000 people.  
Coffin–Lowry syndrome is caused by [[loss-of-function mutation]]s in the ''[[RPS6KA3]]'' gene, which encodes the enzyme [[ribosomal S6 kinase 2]] (RSK2). RSK2 is a component of the mitogen-activated protein kinase (MAPK) signaling pathway and is involved in regulating cell growth and development, particularly in the brain and skeletal system.
Prenatal testing is available to test for CLS of an offspring if a family member has been diagnosed with CLS. <ref>Marques Pereira, P., Schneider, A., Pannetier, S. et al. Coffin–Lowry syndrome. Eur J Hum Genet 18, 627–633 (2010). https://doi.org/10.1038/ejhg.2009.189</ref>


==Cell Physiology==
More than 140 different mutations in ''RPS6KA3'' have been identified, including [[missense mutation]]s, [[nonsense mutation]]s, and small [[insertion]]s or [[deletion]]s. These mutations impair the normal function of RSK2, leading to disrupted cellular signaling and abnormal development.
[[File:RSKActivity.png|thumb|RSK2 controls the activity of proteins crucial for normal cellular function.]]
Mutations in the RPS6KA3 gene can result in expression of an RSK2 protein (Ribosomal S6 kinase 2) with reduced or absent kinase function.  RSK2 is a downstream component of the MAPK (mitogen-activated protein kinase) cascade that is itself a kinase.. RSK2 phosphorylates cellular proteins (including histone H3, and CREB), which regulate eukaryotic gene expression. In individuals with Coffin-Lowry syndrome, phosphorylation of transcriptional regulators is reduced due to the weakened activity of RSK2 kinase activity. RSK2 is normally activated by the ERK MAP kinase.  Mutated RSK2 may be deficient for activation by ERK, or its kinase activity may be reduced despite activation by ERK. The most common mutation in RPS6KA3 is an early stop codon that fails to produce a functional protein, indicating that disease etiology most likely arises from loss-of-function effects. Substitution mutations (which alter a single amino acid) have also been shown to give rise to the disease. RSK2 is  highly expressed in the brain, specifically in the neocortex, hippocampus, and Purkinje cells, all of which are involved in cognitive function and behavior. There is some experimental evidence that RSK2 regulates synaptic transmission and plasticity in neuronal cell types.<ref>Marques Pereira, P., Schneider, A., Pannetier, S. et al. Coffin–Lowry syndrome. Eur J Hum Genet 18, 627–633 (2010). https://doi.org/10.1038/ejhg.2009.189</ref>


==Symptoms and Diagnosis==
Most cases of CLS arise from [[de novo mutation]]s, meaning the mutation occurs spontaneously in the affected individual with no prior family history. However, in 20–30% of cases, the condition is inherited from a [[carrier]] mother. Due to [[X-inactivation]] in females, the severity of symptoms can vary. Affected females typically have milder manifestations compared to males, although rare cases of homozygous females have been reported with severe phenotypes.
Symptoms of disease are more severe in males, who are generally diagnosed in early childhood. Children afflicted by CLS display cognitive disabilities of varying severity. Additional neuromuscular features include sleep apnea, muscular spasticity, progressive loss of muscle strength and tone leading to paraplegia or partial paralysis. Affected individuals are at elevated risk of stroke. Some patients experience stimulus-induced drop attacks (SIDAs) (temporary paralytic episodes without loss of consciousness), triggered by unpredictable environmental stimuli (touch, scents, sounds, etc.). SIDA episodes become more frequent as the disease progresses, and become frequent around adolescence in males. Additional clinical physical features include small, soft hands with tapered fingers. Distinct facial architecture such as a flattened nose, widely separated and downward sloping eyes, a prominent forehead, and a wide mouth with large lips are reported as coincident facial features in patients with the disorder. Some individuals experience hearing loss.  Others display kyphoscoliosis (multidirectional curvature of the spine) can lead to difficulty with breathing and/or pulmonary hypertension. Cardiorespiratory complications may arise, which is why it is recommended that CLS patients undergo regular monitoring for spinal irregularities. Physical exams, CT and x-ray imaging, are standard methods of assessment. Affected individuals are often short in stature. Behavioral symptoms include aggression and depression, but these may be secondary to the emotional consequences of significant physical disabilities associated with the disorder.  <ref>Rogers RC, Abidi FE. Coffin-Lowry Syndrome. 2002 Jul 16 [Updated 2018 Feb 1]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1346/</ref>


Coffin-Lowry patients may be affected by chewing and swallowing difficulties, for which there are diagnostic assessments. Among these are the Videofluoroscopic Swallowing Evaluation (VFSE) , the Karaduman Chewing Performance Scale, and the Penetration Aspiration Scale (PAS) which is used to evaluate accidental aspiration of food particles <ref>Kübra Şahan, A. (2019, December 23). Chewing and Swallowing Training Program in Coffin-Lowry Syndrome - Full Text View. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04199546?cond=COFFIN-LOWRY+SYNDROME&draw=2&rank=1</ref>. The Pediatric Assessment Tool (PEDI-EAT-10) also includes measurement of severity of dysphagia (difficulty in swallowing). Molecular genetic testing can be used to confirm the genetic diagnosis of Coffin-Lowry syndrome or to assess pregnancy risk in affected families.
== Clinical Features ==
The clinical presentation of CLS is variable but typically includes:


Symptoms table:
* Moderate to severe [[intellectual disability]]
* Generally symptoms listed as “rare” are common in more severe cases.
* Developmental delay, especially in [[speech]] and [[motor skills]]
{| class="wikitable"
* Distinctive [[craniofacial]] features such as a broad nasal bridge, prominent forehead, downward-slanting [[palpebral fissures]], thick eyebrows, wide mouth, and large, soft hands
|-
* Progressive [[kyphoscoliosis]] and other [[skeletal dysplasias]]
! Symptom !! Description !! Frequency (male) !! Frequency (female) !! When 1st Observed !! Prognosis !! Treatment
* [[Hypotonia]] (reduced muscle tone)
|-
* [[Stimulus-induced drop episodes]] (sudden loss of muscle tone after loud noises or emotional stimuli)
| Cognitive disabilities || Mental Retardation || Most severe || Ranges from severe to relatively normal intellect || || Variable ||
* [[Hearing loss]], often sensorineural in type
|-
* [[Visual impairment]], such as [[cataracts]] or [[optic atrophy]]
| Sleep apnea || Sleep disorder where breathing starts/stops, a lot of times the person will snore || More common || Less common || Progressive || || CPAP Machine
* [[Cardiac abnormalities]], including [[mitral valve prolapse]] and [[hypertrophic cardiomyopathy]]
|-
* [[Seizure]]s (in a minority of patients)
| Muscular spasticity || Stiff muscles || Most common || Less common || || || Muscle relaxers
|-
| Loss of muscle strength || || || || || Paraplegia or partial paralysis ||Physical therapy
|-
| Delayed Speech || Limited vocabulary || Most common || Least common || || || Speech therapy
|-
| Cardiovascular Complications || Mitral valve dysfunction, congestive heart failure || Most severe || Common || || Premature death ||
|-
| Stroke ||Interrupted blood flow to the brain || || || || ||
|-
| Convulsions || Sudden, irregular body movements that can be violent || Common || Common || 1 year of age and onwards || Depending on severity can lead to death || Medications, such as valproate
|-
| Stimulus-induced drop attacks (SIDAs) || Instantaneous loss of muscle tone as a result of sudden unexpected tactile of auditory stimuli but without loss of consciousness || Rare but observed || Rare but observed || Adolescence || Progressive || Prescribed benzodiazepines
|-
| Small/soft/fleshy hands || || More common || Less common || At birth || ||
|-
| Tapered fingers ||  || More common || Less common || At birth || ||
|-
| Flattened nose ||  || Most Common || Least common but variable || Childhood || ||
|-
| Widely separated/ downward sloping eyes || || Most common || Least common but variable || At birth || ||
|-
| Prominent forehead || Protruding forehead || Most common || Least common but variable || Early infancy || ||
|-
| Wide mouth/ Large lips || || Most severe || Least common but variable || 2 years of age || Progressive ||
|-
| Sensorineural deafness || Hearing Loss || Most common || Least common || || || No cure- can utilize cochlear implants or hearing aids
|-
| Kyphoscoliosis || Abnormal curvature of the spine in 2 planes, outward rounding of the spine || Most severe || Least Common || Progressive || Severe cardiorespiratory compromise and ultimately death ||Physical therapy
|-
| Short stature || Range of height is from 115-158cm || Most common || Least common || Early childhood || ||
|-
| Aggression || Violent behavior || || || || || Risperidone prescription
|-
| Depression || Feelings of sadness  || Very rare || Most severe || 20 years of age || || Psychiatric therapy, selective serotonin reuptake inhibitors
|-
| Difficulty swallowing || Difficult time swallowing || Common || Common || 3 years of age || || Rehabilitation
|-
| Difficulty chewing || Difficult time chewing  || Common || Common || 3 years of age || || Rehabilitation
|-
| Coughing while eating || Coughing while eating || Common || Common || 3 years of age || || Rehabilitation
|-
| Long-lasting wheezing || Coughs accompanied with a whistling sound from the chest that lasts long term || Common || Common || 3 years of age || || Rehabilitation
|-
| Sputum || Coughing up saliva and mucus || Common || Common || 3 years of age || || Rehabilitation
|-
| Inability to ingest food || Inability to eat food easily || Common || Common || 3 years of age || || Rehabilitation
|-
|}


==Causes==
== Diagnosis ==
The syndrome is caused by [[mutation]]s in the [[RPS6KA3]] [[gene]].<ref>{{cite journal |vauthors=Delaunoy JP, Dubos A, Marques Pereira P, Hanauer A |title=Identification of novel mutations in the RSK2 gene (RPS6KA3) in patients with Coffin–Lowry syndrome |journal=Clin. Genet. |volume=70 |issue=2 |pages=161–6 |date=August 2006 |pmid=16879200 |doi=10.1111/j.1399-0004.2006.00660.x }}
Diagnosis of Coffin–Lowry syndrome is based on:
</ref> This gene is located on the short arm of the [[X chromosome]] (Xp22.2). The RPS6KA3 gene makes a [[protein]] that is involved with [[Cell signaling|signaling within cells]].  Researchers believe that this protein helps control the activity of other genes and plays an important role in the brain. The protein is involved in cell signaling pathways that are required for learning, the formation of long-term memories, and the survival of nerve cells. The protein RSK2 which is encoded by the RPS6KA3 gene is a kinase which phosphorylates some substrates like CREB and histone H3.  RSK2 is involved at the distal end of the [[Ras/MapK pathway|Ras/MAPK signaling pathway]]. Mutations in the RPS6KA3 disturb the function of the protein, but it is unclear how a lack of this protein causes the signs and symptoms of Coffin–Lowry syndrome.  At this time more than 120 mutations have been found.<ref name=WhoN/> Some people with the features of Coffin–Lowry syndrome do not have identified mutations in the RPS6KA3 gene. In these cases, the cause of the condition is unknown.


This condition is inherited in an [[X-linked]] dominant pattern. A condition is considered X-linked if the gene that causes the disorder is located on the X chromosome (one of the two sex chromosomes). The inheritance is dominant if one copy of the altered gene is sufficient to cause the condition.
* Detailed clinical evaluation and recognition of characteristic features
* Family history and [[pedigree analysis]]
* [[Genetic testing]] to identify mutations in the ''RPS6KA3'' gene


A majority of boys with Coffin–Lowry syndrome have no history of the condition in their families. These cases are caused by new mutations in the RPS6KA3 gene (de novo mutations). A new mutation means that neither parent has the altered gene, but the affected individual could pass it on to his children.
Prenatal testing is available when there is a known mutation in the family.


==Diagnosis==
== Differential Diagnosis ==
X-ray and neuroimaging studies may be helpful in confirming a diagnosis of Coffin–Lowry syndrome. Decreased ribosomal S6 kinase activity in cultured fibroblast or transformed lymphoblast cells from a male indicates Coffin–Lowry syndrome. Studies of enzyme activity can not be used to diagnose an affected female.
Conditions that may resemble CLS and should be considered include:


Molecular genetic testing on a blood specimen or cells from a cheek swab is available to identify mutations in the RSK2 gene. This testing can be used to confirm but not rule out the diagnosis of Coffin–Lowry syndrome because not all affected individuals have a detectable mutation.<ref>{{cite web|title=Coffin Lowry Syndrome - NORD (National Organization for Rare Disorders)|url=https://rarediseases.org/rare-diseases/coffin-lowry-syndrome/|website=RareDiseases.org|access-date=February 2, 2017}}</ref>
* [[Fragile X syndrome]]
* [[Angelman syndrome]]
* [[Lujan–Fryns syndrome]]
* [[Aarskog syndrome]]
* [[Smith–Lemli–Opitz syndrome]]


==Treatment/Management of Symptoms==
== Management ==
{{Empty section|date=December 2016}}
There is no cure for CLS. Management is supportive and involves a multidisciplinary approach:
There is no cure for Coffin-Lowry syndrome. Clinical objectives are centered on symptom management. Because stimulus-induced drop attacks (SIDAs) can result in physical harm to patients with the disorder, the use of medication to prevent or reduce the number of SIDA episodes is a safety priority.  Physical precautionary measures have also been used to protect patients from injury, including the use of a helmet or a wheelchair. Because sudden excitement or fright can trigger a SIDA episode it is important to minimize exposure to startling stimuli. Medications prescribed include benzodiazepines (tranquilizers used to treat anxiety), valproate (used to manage epilepsy and bipolar disorder), and selective serotonin reuptake inhibitors (SSRIs) (used to treat major depression).  When affected individuals display aggressive or destructive behavior that could harm themselves or others, the antipsychotic medication risperidone may eventually be prescribed. It is recommended that spinal development be monitored regularly by x-ray and physical exams. Echocardiograms are recommended every 5-10 years to assess cardiac function and development.
Families are encouraged to receive genetic counseling in order to understand and prepare to provide care for children affected by Coffin-Lowry syndrome (CLS).<ref>Rogers RC, Abidi FE. Coffin-Lowry Syndrome. 2002 Jul 16 [Updated 2018 Feb 1]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1346/</ref>


==Prognosis==
* Regular monitoring and treatment of [[cardiac]] and [[orthopedic]] complications
Lifespan may be significantly shortened in males with Coffin-Lowry syndrome. Patients may survive into their late twenties, but generally suffer from early mortality due to cardiac, respiratory, and post-operative complications. The progression of reduced cardiac functioning over time may necessitate surgical procedures to counteract mitral valve dysfunction, congenital heart disease, patent ductus arteriosus, and ventricular hypertrophy.  Kyphoscoliosis may worsen over time and contribute to these pathologies. <ref>Marques Pereira, P., Schneider, A., Pannetier, S. et al. Coffin–Lowry syndrome. Eur J Hum Genet 18, 627–633 (2010). https://doi.org/10.1038/ejhg.2009.189</ref>
* [[Speech therapy]], [[physical therapy]], and [[occupational therapy]]
* Use of [[hearing aids]] or [[cochlear implants]] if hearing loss is present
* Educational support tailored to cognitive ability
* [[Antiepileptic drugs]] for seizure control, if needed
* Genetic counseling for affected families


==History==
== Prognosis ==
Coffin–Lowry was first described by Grange S. Coffin (b. 1923) in 1966 and independently by Robert Brian Lowry (b. 1932) in 1971.<ref name=WhoN>{{WhoNamedIt|synd|3425}}</ref><ref>{{cite journal |vauthors=Coffin GS, Siris E, Wegienka LC |title=Mental retardation with osteocartilaginous anomalies |journal=[[American Journal of Diseases of Children|Am. J. Dis. Child.]] |volume=112 |issue= 3|pages=205–213 |year=1966 |doi=10.1001/archpedi.1966.02090120073006}}</ref><ref>{{cite journal |vauthors=Lowry B, Miller JR, Fraser FC |title=A new dominant gene mental retardation syndrome. Association with small stature, tapering fingers, characteristic facies, and possible hydrocephalus |journal=Am. J. Dis. Child. |volume=121 |issue=6 |pages=496–500 |date=June 1971 |pmid=5581017 |doi=10.1001/archpedi.1971.02100170078009}}</ref> Dr. Temtamy showed that the cases represented a single syndrome in 1975.
The prognosis for individuals with CLS varies. While some affected individuals may achieve some level of independence, most require lifelong support. Life expectancy may be reduced in cases with severe cardiac or neurological complications. Females generally have milder symptoms and a better prognosis.


In 1972, Peter G. Procopis and B. Turner published a case study on a family of four brothers with Coffin-Lowry Syndrome, with female relatives, specifically sisters, only possessing some mild deformities and abnormalities.<ref>McKusick, V. A., & Kniffin, C. L. (2019, November 11). COFFIN-LOWRY SYNDROME; CLS. Retrieved from https://www.omim.org/entry/303600</ref> In 1975, Samia Temtamy reported eight patients from three different families displaying symptoms of Coffin-Lowry Syndrome, suggesting that the disorder is more common than believed and often goes underdiagnosed. On the basis of these reports, AG Hunter, Simone Gilgenkrantz, and ID Young established Coffin-Lowry Syndrome as an novel medical diagnosis and named it for the two doctors to originally describe its clinical symptoms.
== Epidemiology ==
Additional case studies have since expanded the original list of clinical signs and symptoms. In 2002, Helen Fryssira and RJ Simensen identified a 3 base pair deletion in the gene encoding RSK2, which was the first report of the gene responsible for Coffin-Lowry.
Coffin–Lowry syndrome is considered rare, with an estimated prevalence between 1 in 50,000 and 1 in 100,000 live births. It affects both males and females, although males are usually more severely affected.


==CLS Foundation==
== History ==
The Coffin–Lowry Syndrome Foundation<ref>{{cite web|url=http://www.clsf.info/|title=Home|website=www.clsf.info}}</ref> acts as a clearinghouse for information on Coffin–Lowry syndrome and hosts a forum for affected families. The family matching program facilitates community building and resource sharing for recent diagnoses.<ref>{{cite web|title=Coffin–Lowry Syndrome Foundation|url=http://www.ninds.nih.gov/find_people/voluntary_orgs/volorg720.htm|website=National Institute of Neurological Disorders and Stroke|accessdate=29 February 2016}}</ref>
The syndrome was first described by Dr. Grange S. Coffin and Dr. Robert B. Lowry in the 1960s and 1970s. Advances in molecular genetics have since clarified the genetic basis of the disorder.
 
The Coffin-Lowry Syndrome Foundation was created in 1991. The mission of the Foundation is to provide informational links, resources, and databases to families and patients dealing with the disease and enables them to communicate with one another. Families and patients can share their experiences and retrieve advice on the foundation’s online site as well as locate helpful services, telephone support, and day-to-day news on medical progress into understanding and treating those affected by Coffin-Lowry Syndrome. The symbol of the foundation is an apple, chosen for its representation of knowledge, feminine beauty, immortality, rebirth, and peace. The foundation provides a support network and source of hope for the families of patients with Coffin-Lowry Syndrome. A company called “Needle in a Haystack” sells durable toys that help children with balance and coordination issues. Collis-curve toothbrushes were designed to make it possible to brush multiple dental surfaces at once, which makes dental hygiene more comfortable for patients with sensitive oral cavities.  
 
 
Collis Curve Toothbrush: https://colliscurve.com/ → link also available at Coffin-Lowry Syndrome foundation page (https://www.clsf.info/Resources/Resources.html)
 
“Needle in a Haystack” Durable Toys Wagon: http://www.durabletoys.com/ → link also available at Coffin-Lowry Syndrome foundation page (https://www.clsf.info/Resources/Resources.html)
 
==Other resources/current research==
There is a new research clinical trial being conducted in Hacettepe University located in Ankara, Turkey that focuses on managing the swallowing disorder and chewing problems experienced by patients with Coffin-Lowry Syndrome. The study is titled “Chewing and Swallowing Training Program in Coffin Lowry Syndrome”
 
 
==References==
{{reflist}}
 
==Sources==
''This article incorporates public domain text from [http://ghr.nlm.nih.gov The U.S. National Library of Medicine] and the [http://www.ninds.nih.gov/index.htm National Institute of Neurological Disorders and Stroke].''


== See also ==
* [[Genetic disorder]]
* [[X-linked dominant inheritance]]
* [[Intellectual disability]]
* [[Kyphoscoliosis]]
* [[Mitogen-activated protein kinase pathway]]
* [[Ribosomal S6 kinase]]
* [[List of cutaneous conditions associated with internal malignancy]]
== External links ==
== External links ==
{{Medical resources
{{Medical resources
Line 164: Line 105:
* [https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=cls  GeneReviews/UW/NIH entry on Coffin–Lowry syndrome]
* [https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=cls  GeneReviews/UW/NIH entry on Coffin–Lowry syndrome]
* http://ghr.nlm.nih.gov/condition/coffin-lowry-syndrome
* http://ghr.nlm.nih.gov/condition/coffin-lowry-syndrome
{{X-linked disorders}}
{{X-linked disorders}}
{{Deficiencies of intracellular signaling peptides and proteins}}
{{Deficiencies of intracellular signaling peptides and proteins}}
 
{{stub}}
{{DEFAULTSORT:Coffin-Lowry syndrome}}
{{DEFAULTSORT:Coffin-Lowry syndrome}}
[[Category:Deficiencies of intracellular signaling peptides and proteins]]
[[Category:Deficiencies of intracellular signaling peptides and proteins]]
[[Category:Rare genetic syndromes]]
[[Category:Rare genetic syndromes]]
[[Category:Syndromes affecting the heart]]
[[Category:Syndromes affecting the heart]]
{{dictionary-stub1}}

Latest revision as of 19:55, 26 March 2025

Rare X-linked genetic disorder with intellectual disability and skeletal abnormalities


Coffin–Lowry syndrome
Synonyms CLS, Progressive intellectual and skeletal syndrome
Pronounce N/A
Specialty N/A
Symptoms Intellectual disability, kyphoscoliosis, growth retardation, facial dysmorphism, hypotonia, seizures, cardiac abnormalities
Complications Hearing loss, visual impairment, cardiomyopathy, scoliosis
Onset Infancy or early childhood
Duration Lifelong
Types
Causes Mutations in the RPS6KA3 gene
Risks Family history of CLS
Diagnosis Clinical examination, genetic testing
Differential diagnosis Fragile X syndrome, Angelman syndrome, Lujan–Fryns syndrome
Prevention Genetic counseling
Treatment Supportive care, physical therapy, speech therapy, educational support
Medication As needed for seizures or cardiac issues
Prognosis Variable; males typically more severely affected than females
Frequency 1 in 50,000 to 1 in 100,000
Deaths Rare, often related to severe cardiac or neurological complications


Coffin–Lowry syndrome (CLS) is a rare X-linked dominant genetic disorder characterized by intellectual disability, skeletal abnormalities, delayed development, and distinctive facial features. The condition is more severe in males due to their single X chromosome and typically presents during infancy or early childhood.

Genetic Basis[edit]

Coffin–Lowry syndrome is caused by loss-of-function mutations in the RPS6KA3 gene, which encodes the enzyme ribosomal S6 kinase 2 (RSK2). RSK2 is a component of the mitogen-activated protein kinase (MAPK) signaling pathway and is involved in regulating cell growth and development, particularly in the brain and skeletal system.

More than 140 different mutations in RPS6KA3 have been identified, including missense mutations, nonsense mutations, and small insertions or deletions. These mutations impair the normal function of RSK2, leading to disrupted cellular signaling and abnormal development.

Most cases of CLS arise from de novo mutations, meaning the mutation occurs spontaneously in the affected individual with no prior family history. However, in 20–30% of cases, the condition is inherited from a carrier mother. Due to X-inactivation in females, the severity of symptoms can vary. Affected females typically have milder manifestations compared to males, although rare cases of homozygous females have been reported with severe phenotypes.

Clinical Features[edit]

The clinical presentation of CLS is variable but typically includes:

Diagnosis[edit]

Diagnosis of Coffin–Lowry syndrome is based on:

  • Detailed clinical evaluation and recognition of characteristic features
  • Family history and pedigree analysis
  • Genetic testing to identify mutations in the RPS6KA3 gene

Prenatal testing is available when there is a known mutation in the family.

Differential Diagnosis[edit]

Conditions that may resemble CLS and should be considered include:

Management[edit]

There is no cure for CLS. Management is supportive and involves a multidisciplinary approach:

Prognosis[edit]

The prognosis for individuals with CLS varies. While some affected individuals may achieve some level of independence, most require lifelong support. Life expectancy may be reduced in cases with severe cardiac or neurological complications. Females generally have milder symptoms and a better prognosis.

Epidemiology[edit]

Coffin–Lowry syndrome is considered rare, with an estimated prevalence between 1 in 50,000 and 1 in 100,000 live births. It affects both males and females, although males are usually more severely affected.

History[edit]

The syndrome was first described by Dr. Grange S. Coffin and Dr. Robert B. Lowry in the 1960s and 1970s. Advances in molecular genetics have since clarified the genetic basis of the disorder.

See also[edit]

External links[edit]



This article is a medical stub. You can help WikiMD by expanding it!
PubMed
Wikipedia