Sufficient statistic
A sufficient statistic is a concept in statistics that describes a type of statistic that captures all relevant information from a sample about a given parameter of a probability distribution. The formal definition of a sufficient statistic is based on the factorization theorem, which provides a method to determine whether a statistic is sufficient for a parameter of interest.
Definition
According to the factorization theorem, a statistic T(X) is sufficient for parameter θ if and only if the probability density function (pdf) or probability mass function (pmf) of the sample X can be expressed as:
\[ f(x; \theta) = g(T(x); \theta) h(x) \]
where:
- f(x; \theta) is the joint pdf or pmf of the sample X,
- g is a function that depends on the sample only through T(X),
- h is a function that does not depend on the parameter θ.
This theorem implies that the statistic T(X) contains all the information needed to estimate θ, making the rest of the data irrelevant for this purpose once T(X) is known.
Examples
Discrete Distribution
For a sample X = (X_1, X_2, ..., X_n) from a Bernoulli distribution with parameter p, the sum T(X) = \sum_{i=1}^n X_i is a sufficient statistic for p. This is because the joint pmf of X can be factored into a function of T(X) and p, and another function that does not depend on p.
Continuous Distribution
In the case of a sample from a normal distribution with known variance, the sample mean is a sufficient statistic for the mean of the distribution. The joint pdf of the sample can be expressed in a form that depends on the sample mean and the mean parameter, and another part that does not depend on the mean parameter.
Properties
Sufficient statistics are particularly valuable in statistical inference because they reduce the data needed to perform estimations, simplifying analysis without losing information about the parameter of interest. They are closely related to other statistical concepts such as completeness, minimal sufficiency, and ancillary statistics.
Applications
Sufficient statistics are used in various statistical methodologies, including estimation theory, where they help in deriving efficient estimators like the maximum likelihood estimator (MLE). They are also crucial in the development of statistical models and in the simplification of complex data into a manageable form without losing critical information.
See Also
This article is a statistics-related stub. You can help WikiMD by expanding it!
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD