Neutron cross section

From WikiMD's medical encyclopedia

Neutron cross section is a measure of the likelihood of a neutron interacting with a specific nucleus. It is a key concept in nuclear physics and nuclear engineering, particularly in the design and operation of nuclear reactors and nuclear weapons. The neutron cross section is typically measured in barns (a unit of area, 1 barn = 10^-28 m^2).

Overview

The neutron cross section is not a physical cross section but a measure of the probability of interaction between a neutron and a nucleus. It is determined by the properties of the nucleus, including its size, shape, and nuclear structure, as well as the energy of the neutron. The neutron cross section varies greatly from nucleus to nucleus and is also strongly dependent on the neutron's energy.

Types of Neutron Interactions

There are several types of interactions that a neutron can have with a nucleus, each with its own cross section. These include elastic scattering, inelastic scattering, radiative capture, fission, and neutron-induced fission. The sum of the cross sections for all possible interactions is the total cross section.

Elastic Scattering

In elastic scattering, the neutron is deflected by the nucleus, but neither the neutron nor the nucleus is excited or transformed. The neutron and nucleus share kinetic energy, but their total kinetic energy is conserved.

Inelastic Scattering

In inelastic scattering, the neutron is absorbed by the nucleus, which is then excited to a higher energy state. The nucleus subsequently emits a gamma ray, returning to its ground state, and the neutron is re-emitted with lower energy.

Radiative Capture

In radiative capture, the neutron is absorbed by the nucleus, which then emits a gamma ray. The nucleus is left in a higher energy state, and the neutron is not re-emitted.

Fission

In fission, the neutron is absorbed by the nucleus, which then splits into two or more smaller nuclei, releasing a large amount of energy.

Neutron-Induced Fission

In neutron-induced fission, the neutron is absorbed by the nucleus, which then splits into two or more smaller nuclei, releasing a large amount of energy and additional neutrons.

Measurement of Neutron Cross Sections

Neutron cross sections are typically measured using neutron sources and neutron detectors. The neutron source emits neutrons, which are directed at a sample of the material whose cross section is to be measured. The neutron detector measures the number of neutrons that are scattered, absorbed, or cause fission in the sample.

Applications

Neutron cross sections are crucial in the design and operation of nuclear reactors and nuclear weapons. In a nuclear reactor, the neutron cross section of the fuel, the moderator, and the control materials must be known to predict and control the reactor's behavior. In a nuclear weapon, the neutron cross section of the fissile material must be known to predict the weapon's yield.

Stub icon
   This article is a physics-related stub. You can help WikiMD by expanding it!



Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Transform your life with W8MD's budget GLP-1 injections from $125.

W8mdlogo.png
W8MD weight loss doctors team

W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:

NYC weight loss doctor appointments

Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.

Linkedin_Shiny_Icon Facebook_Shiny_Icon YouTube_icon_(2011-2013) Google plus


Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD