Undulator
A device used in synchrotron radiation sources and free-electron lasers
Overview
An undulator is a periodic structure of magnets used in synchrotron radiation sources and free-electron lasers (FELs) to produce highly collimated and intense beams of electromagnetic radiation. The undulator forces a beam of electrons to undergo a series of oscillations, which results in the emission of radiation due to the synchrotron effect.
Principle of Operation
The undulator consists of a series of alternating magnetic fields, typically created by an array of permanent magnets or electromagnets. As the electron beam passes through these fields, it is deflected back and forth in a sinusoidal path. This oscillatory motion causes the electrons to emit radiation at specific wavelengths, determined by the period of the magnetic structure and the energy of the electrons.
The emitted radiation is coherent and can be tuned by adjusting the magnetic field strength or the energy of the electron beam. This tunability makes undulators essential components in modern synchrotron light sources and FELs, where precise control over the wavelength of the emitted light is required.
Applications
Undulators are used in a variety of applications, including:
- Synchrotron light sources: Undulators are key components in synchrotron facilities, providing intense beams of X-rays for X-ray crystallography, spectroscopy, and other scientific research.
- Free-electron lasers: In FELs, undulators are used to generate coherent laser light across a wide range of wavelengths, from the infrared to the X-ray region.
- Medical imaging and therapy: The high-intensity X-rays produced by undulators are used in advanced imaging techniques and radiation therapy.
Comparison with Wigglers
Undulators are often compared to wigglers, another type of insertion device used in synchrotron radiation facilities. While both devices use periodic magnetic fields to produce radiation, undulators have a smaller magnetic field strength and a shorter period, resulting in narrower bandwidth and higher brightness of the emitted radiation. Wigglers, on the other hand, produce a broader spectrum of radiation with higher intensity but lower coherence.
Related pages
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD