Lipid raft

From WikiMD's Wellness Encyclopedia

Lipid rafts are specialized, dynamic microdomains in the plasma membrane of cells, characterized by their unique composition and functions. Unlike the rest of the cell membrane, lipid rafts are rich in cholesterol, sphingolipids, and certain types of proteins, which confer them with a distinct order and functionality. These microdomains are involved in a variety of cellular processes, including signal transduction, membrane trafficking, and the entry of pathogens.

Composition and Structure[edit]

Lipid rafts are more ordered and tightly packed than the surrounding membrane, primarily due to the high concentration of cholesterol and sphingolipids. Cholesterol interacts with the saturated fatty acid chains of sphingolipids, stabilizing the raft structure and making it less fluid than the surrounding membrane. The specific lipid composition also influences the types of proteins that associate with these domains. Proteins found in lipid rafts often have post-translational modifications, such as Glycosylphosphatidylinositol (GPI) anchors or palmitoylation, that facilitate their association with the raft.

Functions[edit]

Lipid rafts play critical roles in various cellular functions:

  • Signal Transduction: They serve as platforms for the assembly of signaling molecules, facilitating efficient signal transduction. For example, they are involved in the signaling pathways of G protein-coupled receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs).
  • Membrane Trafficking: Lipid rafts are implicated in the sorting and transport of proteins and lipids within the cell. They participate in the formation of vesicles for endocytosis and exocytosis.
  • Pathogen Entry: Certain viruses and bacteria exploit lipid rafts to enter and infect host cells. The human immunodeficiency virus (HIV), for instance, targets lipid rafts for entry into T-cells.

Detection and Analysis[edit]

Studying lipid rafts has been challenging due to their small size and dynamic nature. Techniques such as fluorescence resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP), and mass spectrometry have been employed to analyze their composition and dynamics. Additionally, the isolation of lipid rafts through detergent-resistant membrane (DRM) fractionation has been a common method, though it has limitations and has led to some controversy regarding the existence and nature of lipid rafts.

Clinical Significance[edit]

Alterations in lipid raft composition and function have been linked to various diseases, including Alzheimer's disease, cardiovascular diseases, and cancer. For instance, the disruption of lipid rafts affects the processing of the amyloid precursor protein (APP) and is associated with the pathogenesis of Alzheimer's disease. Understanding the role of lipid rafts in disease mechanisms is crucial for developing therapeutic strategies targeting these microdomains.

See Also[edit]

Stub icon
   This article is a medical stub. You can help WikiMD by expanding it!



Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD weight loss doctors team
W8MD weight loss doctors team

W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:

NYC weight loss doctor appointmentsNYC weight loss doctor appointments

Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.

Linkedin_Shiny_Icon Facebook_Shiny_Icon YouTube_icon_(2011-2013) Google plus


Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.