If and only if


If and only if (iff) is a biconditional logical connective between statements. In logic and related fields such as mathematics and philosophy, "if and only if" signifies that either both statements are true or both are false. The expression is used to state that two statements are both necessary and sufficient for each other. The notation p ↔ q represents a biconditional statement; it can be read as "p if and only if q," where p and q are propositions.
Definition[edit]
In formal logic, a biconditional statement is true whenever both parts have the same truth value. The truth table for p ↔ q (where p and q are propositions) is as follows:
| p | q | p ↔ q |
|---|---|---|
| True | True | True |
| True | False | False |
| False | True | False |
| False | False | True |
This shows that p ↔ q is true if p and q are both true or if p and q are both false.
Usage[edit]
In mathematics, "if and only if" is used to convey that two statements are equivalent. For example, in the context of set theory, one might say, "A set is empty if and only if its cardinality is zero." This means that a set being empty is necessary and sufficient for its cardinality to be zero.
In philosophy, especially in logical positivism and analytic philosophy, "if and only if" statements are crucial in formulating definitions and constructing precise arguments.
Notation[edit]
The symbol used to represent "if and only if" in formal logic is "↔" or "⇔". In mathematical texts, it is common to see the abbreviation "iff" for "if and only if" to save space and reduce repetition.
Properties[edit]
The biconditional operator has several important properties:
- Commutativity: p ↔ q is equivalent to q ↔ p.
- Associativity: Given any three propositions p, q, and r, the statement (p ↔ q) ↔ r is equivalent to p ↔ (q ↔ r).
- Distributivity: The biconditional operator does not distribute over other logical operators in the same way as conjunction and disjunction do.
Examples[edit]
1. "A square is a rectangle if and only if it has four right angles." This statement asserts that having four right angles is both necessary and sufficient for a shape to be a square. 2. In number theory, "A number is even if and only if it is divisible by 2." This means that being divisible by 2 is a necessary and sufficient condition for a number to be even.
See also[edit]
Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Weight loss injections in NYC (generic and brand names):
- Zepbound / Mounjaro, Wegovy / Ozempic, Saxenda
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $75 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointmentsNYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian


