Glivenko–Cantelli theorem
Glivenko–Cantelli Theorem
The Glivenko–Cantelli theorem, also known as the fundamental theorem of statistics, is a foundational result in the field of probability theory and statistics. It establishes that the empirical distribution function converges uniformly to the cumulative distribution function of the population from which the sample is drawn, as the sample size increases to infinity. This theorem is named after Valery Glivenko and Francesco Paolo Cantelli, who independently discovered this property in the early 20th century.
Statement of the Theorem
Formally, let \(F(x)\) be the cumulative distribution function (CDF) of a random variable \(X\), and let \(F_n(x)\) be the empirical distribution function (EDF) based on a sample \(X_1, X_2, \ldots, X_n\), defined as:
\[F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x)\]
where \(I\) is the indicator function, which is 1 if \(X_i \leq x\) and 0 otherwise. The Glivenko–Cantelli theorem states that:
\[\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| = 0\]
almost surely, where \(\sup\) denotes the supremum.
Implications
The Glivenko–Cantelli theorem has profound implications in both theoretical and applied statistics. It justifies the use of the empirical distribution function as a consistent estimator for the true cumulative distribution function. This is crucial in many statistical procedures, including hypothesis testing, non-parametric statistics, and goodness-of-fit tests.
Proof and Extensions
The original proof of the Glivenko–Cantelli theorem relies on properties of the empirical distribution function and the cumulative distribution function. Since its initial formulation, several extensions and variations of the theorem have been developed, including versions for dependent and identically distributed random variables.
Applications
In practice, the Glivenko–Cantelli theorem is applied in various statistical methodologies, such as the Kolmogorov-Smirnov test, which is a non-parametric test for the equality of continuous, one-dimensional probability distributions. It also underpins many techniques in machine learning and data science, where understanding the convergence of empirical measures to true distributions is essential.
See Also
- Law of large numbers
- Central limit theorem
- Kolmogorov-Smirnov test
- Empirical distribution function
- Cumulative distribution function
References
- Billingsley, Patrick (1995). Probability and Measure. Wiley-Interscience.
- Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.
This article is a mathematics-related stub. You can help WikiMD by expanding it!
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD