Bayesian information criterion
Bayesian Information Criterion (BIC), also known as Schwarz Information Criterion (SIC), is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred. It is based on the likelihood function and is closely related to the Akaike Information Criterion (AIC). However, BIC introduces a penalty term for the number of parameters in the model to prevent overfitting, which is more stringent than that of AIC.
Overview
The BIC is an asymptotic result derived under the assumption that the data distribution is in the exponential family. It is defined as:
\[ \text{BIC} = -2 \cdot \ln(\hat{L}) + k \cdot \ln(n) \]
where:
- \( \hat{L} \) is the maximum value of the likelihood function for the model,
- \( k \) is the number of parameters to be estimated in the model,
- \( n \) is the number of observations or sample size.
The term \( -2 \cdot \ln(\hat{L}) \) penalizes lack of fit, while the term \( k \cdot \ln(n) \) penalizes complexity. The BIC is particularly useful in model selection where the goal is to select the model that balances a good fit with simplicity.
Comparison with AIC
Both AIC and BIC aim to resolve the trade-off between model fit and complexity but do so in slightly different ways. The key difference lies in the penalty term for the number of parameters: BIC's penalty term is larger, especially as the sample size \( n \) increases. This means BIC tends to select simpler models than AIC, particularly as the sample size grows.
Applications
BIC is widely used in many areas of statistical analysis, including:
- Regression analysis
- Structural equation modeling
- Machine learning for model selection
- Factor analysis
It is particularly popular in the fields of econometrics, sociology, and psychology, where complex models are common, and the risk of overfitting is a concern.
Limitations
While BIC is a powerful tool for model selection, it has limitations:
- It assumes that the true model is among the set of candidate models, which may not always be the case.
- BIC can be overly simplistic in situations where model complexity does not linearly relate to the number of parameters.
- It relies on the assumption of the data being identically and independently distributed, which may not hold in all scenarios.
See Also
References
This article is a statistics-related stub. You can help WikiMD by expanding it!
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD