Autophagy
Autophagy is a fundamental cellular process where cells degrade and recycle their own components through the lysosomal machinery. This process is essential for maintaining cellular homeostasis, responding to stress conditions, and facilitating cellular development and differentiation. The term autophagy, derived from the Greek words auto meaning "self" and phagy meaning "eating," literally translates to "self-eating." This process plays a critical role in removing damaged proteins and organelles, thus preventing diseases such as cancer, neurodegeneration, and infections.
Mechanisms of Autophagy
Autophagy can be classified into three main types: macroautophagy, microautophagy, and chaperone-mediated autophagy, each differing in the way cellular materials are delivered to the lysosome for degradation.
Macroautophagy
Macroautophagy involves the sequestration of cytoplasmic components within double-membraned vesicles called autophagosomes, which subsequently fuse with lysosomes to form autolysosomes where the sequestered material is degraded. This process is regulated by a set of genes known as ATG (autophagy-related genes).
Microautophagy
Microautophagy, on the other hand, involves the direct engulfment of cytoplasmic material by the lysosome itself through invagination, protrusion, and fission of the lysosomal membrane.
Chaperone-Mediated Autophagy
Chaperone-mediated autophagy (CMA) is a selective form of autophagy where specific proteins are recognized by a chaperone protein and directly translocated across the lysosomal membrane through a receptor.
Regulation of Autophagy
Autophagy is tightly regulated by various signaling pathways, the most notable being the mTOR (mechanistic target of rapamycin) pathway, which negatively regulates autophagy in response to nutrient availability. Conversely, activation of the AMP-activated protein kinase (AMPK) pathway promotes autophagy under energy stress conditions.
Role in Disease and Therapy
Autophagy plays a dual role in disease, acting as a protector by eliminating damaged cellular components and as a potential contributor to disease progression when dysregulated. In cancer, autophagy can have both tumor-suppressive and tumor-promoting functions. It is involved in the protection against neurodegenerative diseases by clearing misfolded proteins but can also contribute to the pathogenesis of these diseases when defective. Furthermore, modulation of autophagy has emerged as a therapeutic strategy for treating various diseases, including cancer, neurodegenerative diseases, and infections.
Research and Future Directions
The discovery of autophagy and its mechanisms has been a significant breakthrough in cell biology, earning Yoshinori Ohsumi the Nobel Prize in Physiology or Medicine in 2016. Ongoing research aims to further elucidate the complex regulatory mechanisms of autophagy and its implications in health and disease, with the hope of developing novel therapeutic strategies targeting autophagy-related pathways.
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD