Individualized medicine: Difference between revisions

From WikiMD's Wellness Encyclopedia

No edit summary
Tag: Manual revert
CSV import
 
Line 1: Line 1:
{{short description|Type of medical treatment}}
{{Short description|A medical approach tailored to the individual patient}}
{{Multiple issues|{{orphan|date=September 2019}}{{original research|date=September 2019}}}}
{{Use dmy dates|date=October 2023}}


'''Individualized medicine''' tailors treatment to a single patient. The term refers to an individual, truly [[personalized medicine]] that strives to treat each patient on the basis of his own individual biology.
'''Individualized medicine''', also known as '''personalized medicine''', is a medical model that proposes the customization of healthcare, with medical decisions, practices, and/or products being tailored to the individual patient. It often involves the use of [[genetic information]] to guide decisions made in regard to the prevention, diagnosis, and treatment of disease.


Individualized medicine represents a further individualization of personalized medicine. While the latter is aimed at a specific group of patients, individualized medicine deals with the individual circumstances of a single person. Thus, individualized medicine goes one step further and can be considered as an increase in personalized medicine.
==Overview==
Individualized medicine is an evolving field that seeks to improve the precision of medical care by considering the unique genetic makeup of each patient. This approach contrasts with the traditional "one-size-fits-all" approach, where treatments and medications are designed for the average person, without taking into account the genetic differences between individuals.


Individualized medicine seeks to derive tailored therapies for individuals by taking into account a person's [[genes]] as well as the full range of that person's unique nature, including biological, physiological and anatomical information.
==Genetic Basis==
The foundation of individualized medicine lies in the understanding of the [[human genome]]. Advances in [[genomics]] and [[biotechnology]] have enabled the sequencing of individual genomes, allowing for the identification of genetic variations that may influence a person's response to certain medications or susceptibility to specific diseases. This information can be used to tailor medical treatments to the individual's genetic profile.


== Background ==
==Applications==
Individualized medicine was first mentioned in the literature in 2003 and described the individual drug metabolism in [[pharmacogenomics]].<ref name="Srivastava 2003">{{cite journal |last1=Srivastava |first1=P |title=Drug metabolism and individualized medicine |journal=Curr Drug Metab |date=2003 |volume=4 |issue=1 |pages=33–44 |pmid=12570744|doi=10.2174/1389200033336829 }}</ref><ref name="Pokorska 2014">{{cite journal |last1=Pokorska-Bocci |first1=A |last2=Stewart |first2=A |last3=Sagoo |first3=GS |last4=Hall |first4=A |last5=Kroese |first5=M |last6=Burton |first6=H |title='Personalized medicine': what's in a name? |journal=  Personalized Medicine|date=2014 |volume=11 |issue=2 |pages=197–210 |doi=10.2217/pme.13.107 |pmid=29751382}}</ref> Subsequently, the term was used to improve diagnosis based on genetic differences and physiological information and to better tailor the treatment to the needs of a single patient.<ref name="Hall 2003">{{cite journal |last1=Hall |first1=JG |title=Individualized medicine. What the genetic revolution will bring to health care in the 21st century |journal=Can Fam Physician |date=2003 |volume=49 |issue=1 |pages=12–13 |pmid=12602834|pmc=2214122 }}</ref><ref name="Hoffmann 2011">{{cite journal |last1=Hoffman |first1=MA |last2=Williams |first2=MS |title=Electronic medical records and personalized medicine |journal=Hum Genet |date=2011 |volume=130 |issue=1 |pages=33–39 |doi=10.1007/s00439-011-0992-y |pmid=21519832}}</ref><ref name="Pokorska 2014" />
Individualized medicine has applications in various fields of healthcare, including:


More recently, a second context has been introduced that relates to therapeutic approaches that use a person's own cell material to develop a treatment that is unique to the patient from whom the material originated.<ref name="Pokorska 2014" /> Examples are [[stem-cell therapies]]<ref name="Baker 2011">{{cite journal |last1=Baker |first1=M |title=Reprogramming Rx |journal=Nat Med |date=2011 |volume=17 |issue=3 |pages=241–243 |doi=10.1038/nm0311-241 |pmid=21383713}}</ref> and [[cancer vaccines]],<ref name="Gravitz 2011">{{cite journal |last1=Gravitz |first1=L |title=A fight for life that united a field |journal=Nature |date=2011 |volume=478 |issue=7368 |pages=163–164 |doi=10.1038/478163a |pmid=21993732|bibcode=2011Natur.478..163G }}</ref> which are based on individually distinct molecular profiles.<ref name="Graham-Rowe 2011">{{cite journal |last1=Graham-Rowe |first1=D |title=Overview: Multiple lines of attack |journal=Nature |date=2011 |volume=480 |issue=7377 |pages=S34–S35 |doi=10.1038/480S34a |pmid=22169797|bibcode=2011Natur.480S..34G }}</ref><ref name="Humphries 2011">{{cite journal |last1=Humphries |first1=C |title=Genetics: Profiling a shape-shifter |journal=Nature |date=2011 |volume=480 |issue=7377 |pages=S50–S51 |doi=10.1038/480S50a |pmid=22169804|bibcode=2011Natur.480S..50H }}</ref>
* '''[[Pharmacogenomics]]''': The study of how genes affect a person's response to drugs. This field aims to develop effective, safe medications and doses that are tailored to a person's genetic makeup.
* '''[[Oncology]]''': Personalized cancer treatment plans can be developed based on the genetic mutations present in a patient's tumor, allowing for targeted therapies that are more effective and have fewer side effects.
* '''[[Cardiology]]''': Genetic testing can help identify individuals at risk for certain heart conditions, allowing for early intervention and personalized treatment plans.
* '''[[Infectious diseases]]''': Understanding the genetic factors that influence susceptibility to infections can lead to more effective prevention and treatment strategies.


== Genome research ==
==Challenges==
[[Genome]] research has led to new resources that allow more accurate diagnosis and disease management to be tailored to each patient.<ref name="Pokorska 2014" /> The challenge of health research is to maximize therapeutic efficacy for each patient while minimizing side effects. An individual medicine approach may be required for those patients who cannot be categorized by mainstream personalized medicine or who suffer diseases without effective drug therapies. The widespread use of advanced imaging techniques and high-throughput technologies that allow for the in-depth study of genes, proteins, and metabolites provides a better understanding of the molecular processes involved in the origin and progression of a disease.<ref name="Pokorska 2014" /> Along with other information, these data form the basis for the development of new diagnostic technologies and treatment approaches that are customized for each individual patient.
Despite its potential, individualized medicine faces several challenges:


== Individualized medicine in oncology ==
* '''[[Ethical issues]]''': The use of genetic information raises concerns about privacy, consent, and potential discrimination based on genetic data.
Individualized medicine is playing an increasingly important role, especially in [[oncology]], given that [[cancers]] can be extremely heterogeneous between individual patients and within the [[tumor]] itself.<ref name="Chen 2017">{{cite journal |last1=Chen |first1=DS |last2=Mellman |first2=I |title=Elements of cancer immunity and the cancer-immune set point |journal=Nature |date=2017 |volume=541 |issue=7637 |pages=321–330 |doi=10.1038/nature21349 |pmid=28102259|bibcode=2017Natur.541..321C }}</ref> For example, [[individualized cancer immunotherapy]] with the production of [[vaccines]] tailored to match a person's individual constellation of cancer [[mutations]], the [[mutanome]], has become a new field of research.<ref name="Hilf 2019">{{cite journal |last1=Hilf |first1=N |last2=Kuttruff-Coqui |first2=S |last3=Frenzel |first3=K |last4=Bukur |first4=V |last5=Stevanović |first5=S |last6=Gouttefangeas |first6=C |last7=Platten |first7=M |last8=Tabatabai |first8=G |last9=Dutoit |first9=V |last10=van der Burg |first10=SH |last11=Thor Straten |first11=P |last12=Martínez-Ricarte |first12=F |last13=Ponsati |first13=B |last14=Okada |first14=H |last15=Lassen |first15=U |last16=Admon |first16=A |last17=Ottensmeier |first17=CH |last18=Ulges |first18=A |last19=Kreiter |first19=S |last20=von Deimling |first20=A |last21=Skardelly |first21=M |last22=Migliorini |first22=D |last23=Kroep |first23=JR |last24=Idorn |first24=M |last25=Rodon |first25=J |last26=Piró |first26=J |last27=Poulsen |first27=HS |last28=Shraibman |first28=B |last29=McCann |first29=K |last30=Mendrzyk |first30=R |last31=Löwer |first31=M |last32=Stieglbauer |first32=M |last33=Britten |first33=CM |last34=Capper |first34=D |last35=Welters |first35=MJP |last36=Sahuquillo |first36=J |last37=Kiesel |first37=K |last38=Derhovanessian |first38=E |last39=Rusch |first39=E |last40=Bunse |first40=L |last41=Song |first41=C |last42=Heesch |first42=S |last43=Wagner |first43=C |last44=Kemmer-Brück |first44=A |last45=Ludwig |first45=J |last46=Castle |first46=JC |last47=Schoor |first47=O |last48=Tadmor |first48=AD |last49=Green |first49=E |last50=Fritsche |first50=J |last51=Meyer |first51=M |last52=Pawlowski |first52=N |last53=Dorner |first53=S |last54=Hoffgaard |first54=F |last55=Rössler |first55=B |last56=Maurer |first56=D |last57=Weinschenk |first57=T |last58=Reinhardt |first58=C |last59=Huber |first59=C |last60=Rammensee |first60=HG |last61=Singh-Jasuja |first61=H |last62=Sahin |first62=U |last63=Dietrich |first63=PY |last64=Wick |first64=W |title=Actively personalized vaccination trial for newly diagnosed glioblastoma |journal=Nature |date=2019 |volume=565 |issue=7738 |pages=240–245 |doi=10.1038/s41586-018-0810-y |pmid=30568303|bibcode=2019Natur.565..240H }}</ref><ref name="Keskin 2019">{{cite journal |last1=Keskin |first1=DB |last2=Anandappa |first2=AJ |last3=Sun |first3=J |last4=Tirosh |first4=I |last5=Mathewson |first5=ND |last6=Li |first6=S |last7=Oliveira |first7=G |last8=Giobbie-Hurder |first8=A |last9=Felt |first9=K |last10=Gjini |first10=E |last11=Shukla |first11=SA |last12=Hu |first12=Z |last13=Li |first13=L |last14=Le |first14=PM |last15=Allesøe |first15=RL |last16=Richman |first16=AR |last17=Kowalczyk |first17=MS |last18=Abdelrahman |first18=S |last19=Geduldig |first19=JE |last20=Charbonneau |first20=S |last21=Pelton |first21=K |last22=Iorgulescu |first22=JB |last23=Elagina |first23=L |last24=Zhang |first24=W |last25=Olive |first25=O |last26=McCluskey |first26=C |last27=Olsen |first27=LR |last28=Stevens |first28=J |last29=Lane |first29=WJ |last30=Salazar |first30=AM |last31=Daley |first31=H |last32=Wen |first32=PY |last33=Chiocca |first33=EA |last34=Harden |first34=M |last35=Lennon |first35=NJ |last36=Gabriel |first36=S |last37=Getz |first37=G |last38=Lander |first38=ES |last39=Regev |first39=A |last40=Ritz |first40=J |last41=Neuberg |first41=D |last42=Rodig |first42=SJ |last43=Ligon |first43=KL |last44=Suvà |first44=ML |last45=Wucherpfennig |first45=KW |last46=Hacohen |first46=N |last47=Fritsch |first47=EF |last48=Livak |first48=KJ |last49=Ott |first49=PA |last50=Wu |first50=CJ |last51=Reardon |first51=DA |title=Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial |journal=Nature |date=2019 |volume=565 |issue=7738 |pages=234–239 |doi=10.1038/s41586-018-0792-9 |pmid=30568305|pmc=6546179 }}</ref><ref name="Vormehr 2019">{{cite journal|last1=Vormehr|first1=M|last2=Türeci|first2=Ö|last3=Sahin|first3=U|date=2019|title=Harnessing Tumor Mutations for Truly Individualized Cancer Vaccines|journal=Annu Rev Med|volume=70|pages=395–407|doi=10.1146/annurev-med-042617-101816|pmid=30691374}}</ref><ref name="Türeci 2018">{{cite journal|last1=Türeci|first1=Ö|last2=Löwer|first2=M|last3=Schrörs|first3=B|last4=Lang|first4=M|last5=Tadmor|first5=A|last6=Sahin|first6=U|date=2018|title=Challenges towards the realization of individualized cancer vaccines|journal=Nat Biomed Eng|volume=2|issue=8|pages=566–569|doi=10.1038/s41551-018-0266-2|pmid=31015635}}</ref><ref name="Sahin 2017">{{cite journal |last1=Sahin |first1=U |last2=Derhovanessian |first2=E |last3=Miller |first3=M |last4=Kloke |first4=BP |last5=Simon |first5=P |last6=Löwer |first6=M |last7=Bukur |first7=V |last8=Tadmor |first8=AD |last9=Luxemburger |first9=U |last10=Schrörs |first10=B |last11=Omokoko |first11=T |last12=Vormehr |first12=M |last13=Albrecht |first13=C |last14=Paruzynski |first14=A |last15=Kuhn |first15=AN |last16=Buck |first16=J |last17=Heesch |first17=S |last18=Schreeb |first18=KH |last19=Müller |first19=F |last20=Ortseifer |first20=I |last21=Vogler |first21=I |last22=Godehardt |first22=E |last23=Attig |first23=S |last24=Rae |first24=R |last25=Breitkreuz |first25=A |last26=Tolliver |first26=C |last27=Suchan |first27=M |last28=Martic |first28=G |last29=Hohberger |first29=A |last30=Sorn |first30=P |last31=Diekmann |first31=J |last32=Ciesla |first32=J |last33=Waksmann |first33=O |last34=Brück |first34=AK |last35=Witt |first35=M |last36=Zillgen |first36=M |last37=Rothermel |first37=A |last38=Kasemann |first38=B |last39=Langer |first39=D |last40=Bolte |first40=S |last41=Diken |first41=M |last42=Kreiter |first42=S |last43=Nemecek |first43=R |last44=Gebhardt |first44=C |last45=Grabbe |first45=S |last46=Höller |first46=C |last47=Utikal |first47=J |last48=Huber |first48=C |last49=Loquai |first49=C |last50=Türeci |first50=Ö |title=Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer |journal=Nature |date=2017 |volume=547 |issue=7662 |pages=222–226 |doi=10.1038/nature23003 |pmid=28678784|bibcode=2017Natur.547..222S }}</ref><ref name="Ott 2017">{{cite journal |last1=Ott |first1=PA |last2=Hu |first2=Z |last3=Keskin |first3=DB |last4=Shukla |first4=SA |last5=Sun |first5=J |last6=Bozym |first6=DJ |last7=Zhang |first7=W |last8=Luoma |first8=A |last9=Giobbie-Hurder |first9=A |last10=Peter |first10=L |last11=Chen |first11=C |last12=Olive |first12=O |last13=Carter |first13=TA |last14=Li |first14=S |last15=Lieb |first15=DJ |last16=Eisenhaure |first16=T |last17=Gjini |first17=E |last18=Stevens |first18=J |last19=Lane |first19=WJ |last20=Javeri |first20=I |last21=Nellaiappan |first21=K |last22=Salazar |first22=AM |last23=Daley |first23=H |last24=Seaman |first24=M |last25=Buchbinder |first25=EI |last26=Yoon |first26=CH |last27=Harden |first27=M |last28=Lennon |first28=N |last29=Gabriel |first29=S |last30=Rodig |first30=SJ |last31=Barouch |first31=DH |last32=Aster |first32=JC |last33=Getz |first33=G |last34=Wucherpfennig |first34=K |last35=Neuberg |first35=D |last36=Ritz |first36=J |last37=Lander |first37=ES |last38=Fritsch |first38=EF |last39=Hacohen |first39=N |last40=Wu |first40=CJ |title=An immunogenic personal neoantigen vaccine for patients with melanoma |journal=Nature |date=2017 |volume=547 |issue=7662 |pages=217–221 |doi=10.1038/nature22991 |pmid=28678778|pmc=5577644 |bibcode=2017Natur.547..217O }}</ref><ref name="Kranz 2016">{{cite journal |last1=Kranz |first1=LM |last2=Diken |first2=M |last3=Haas |first3=H |last4=Kreiter |first4=S |last5=Loquai |first5=C |last6=Reuter |first6=KC |last7=Meng |first7=M |last8=Fritz |first8=D |last9=Vascotto |first9=F |last10=Hefesha |first10=H |last11=Grunwitz |first11=C |last12=Vormehr |first12=M |last13=Hüsemann |first13=Y |last14=Selmi |first14=A |last15=Kuhn |first15=AN |last16=Buck |first16=J |last17=Derhovanessian |first17=E |last18=Rae |first18=R |last19=Attig |first19=S |last20=Diekmann |first20=J |last21=Jabulowsky |first21=RA |last22=Heesch |first22=S |last23=Hassel |first23=J |last24=Langguth |first24=P |last25=Grabbe |first25=S |last26=Huber |first26=C |last27=Türeci |first27=Ö |last28=Sahin |first28=U |title=Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy |journal=Nature |date=2016 |volume=534 |issue=7607 |pages=396–401 |doi=10.1038/nature18300 |pmid=27281205|bibcode=2016Natur.534..396K }}</ref><ref name="Kreiter 2015">{{cite journal |last1=Kreiter |first1=S |last2=Vormehr |first2=M |last3=van de Roemer |first3=N |last4=Diken |first4=M |last5=Löwer |first5=M |last6=Diekmann |first6=J |last7=Boegel |first7=S |last8=Schrörs |first8=B |last9=Vascotto |first9=F |last10=Castle |first10=JC |last11=Tadmor |first11=AD |last12=Schoenberger |first12=SP |last13=Huber |first13=C |last14=Türeci |first14=Ö |last15=Sahin |first15=U |title=Mutant MHC class II epitopes drive therapeutic immune responses to cancer |journal=Nature |date=2015 |volume=520 |issue=7549 |pages=692–696 |doi=10.1038/nature14426 |pmid=25901682|pmc=4838069 |bibcode=2015Natur.520..692K }}</ref><ref name="Carreno 2015">{{cite journal |last1=Carreno |first1=BM |last2=Magrini |first2=V |last3=Becker-Hapak |first3=M |last4=Kaabinejadian |first4=S |last5=Hundal |first5=J |last6=Petti |first6=AA |last7=Ly |first7=A |last8=Lie |first8=WR |last9=Hildebrand |first9=WH |last10=Mardis |first10=ER |last11=Linette |first11=GP |title=Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells |journal=Science |date=2015 |volume=348 |issue=6236 |pages=803–808 |doi=10.1126/science.aaa3828 |pmid=25837513|pmc=4549796 }}</ref><ref name="Castle 2012">{{cite journal|last1=Castle|first1=JC|last2=Kreiter|first2=S|last3=Diekmann|first3=J|last4=Löwer|first4=M|last5=van de Roemer|first5=N|last6=de Graaf|first6=J|last7=Selmi|first7=A|last8=Diken|first8=M|last9=Boegel|first9=S|date=2012|title=Exploiting the mutanome for tumor vaccination|journal=Cancer Res|volume=72|issue=5|pages=1081–1091|doi=10.1158/0008-5472.CAN-11-3722|pmid=22237626|last10=Paret|first10=C|last11=Koslowski|first11=M|last12=Kuhn|first12=AN|last13=Britten|first13=CM|last14=Huber|first14=C|last15=Türeci|first15=O|last16=Sahin|first16=U}}</ref><ref name="Kreiter 2010">{{cite journal |last1=Kreiter |first1=S |last2=Selmi |first2=A |last3=Diken |first3=M |last4=Koslowski |first4=M |last5=Britten |first5=CM |last6=Huber |first6=C |last7=Türeci |first7=O |last8=Sahin |first8=U |title=Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity |journal=Cancer Res |date=2010 |volume=70 |issue=22 |pages=9031–9040 |doi=10.1158/0008-5472.CAN-10-0699 |pmid=21045153}}</ref> Each patient has an individual mutational signature, and only a very small portion of the mutations are shared between patients.<ref name="Kreiter 2012">{{cite journal|last1=Kreiter|first1=S|last2=Castle|first2=JC|last3=Türeci|first3=Ö|last4=Sahin|first4=U|date=2012|title=Targeting the tumor mutanome for personalized vaccination therapy|journal=Oncoimmunology|volume=1|issue=5|pages=768–769|doi=10.4161/onci.19727|pmid=22934277|pmc=3429589}}</ref><ref name="Vormehr 2019" /> The aim of individualized medicine is to optimize the treatment strategy for a single patient using [[Genetics|genetic]] information as well as molecular and cellular analyzes.
* '''[[Cost]]''': The cost of genetic testing and personalized treatments can be high, limiting accessibility for some patients.
* '''[[Data management]]''': The vast amount of genetic data generated requires sophisticated systems for storage, analysis, and interpretation.


== References ==
==Future Directions==
{{Reflist}}
The future of individualized medicine is promising, with ongoing research and technological advancements expected to further enhance its capabilities. The integration of [[artificial intelligence]] and [[machine learning]] in analyzing genetic data is anticipated to improve the accuracy and efficiency of personalized healthcare.


[[Category:Medical terminology]]
==Related pages==
{{No image}}
* [[Genomics]]
* [[Pharmacogenomics]]
* [[Precision medicine]]
* [[Genetic testing]]
 
[[Category:Medicine]]
[[Category:Genomics]]
[[Category:Personalized medicine]]

Latest revision as of 19:19, 22 March 2025

A medical approach tailored to the individual patient



Individualized medicine, also known as personalized medicine, is a medical model that proposes the customization of healthcare, with medical decisions, practices, and/or products being tailored to the individual patient. It often involves the use of genetic information to guide decisions made in regard to the prevention, diagnosis, and treatment of disease.

Overview[edit]

Individualized medicine is an evolving field that seeks to improve the precision of medical care by considering the unique genetic makeup of each patient. This approach contrasts with the traditional "one-size-fits-all" approach, where treatments and medications are designed for the average person, without taking into account the genetic differences between individuals.

Genetic Basis[edit]

The foundation of individualized medicine lies in the understanding of the human genome. Advances in genomics and biotechnology have enabled the sequencing of individual genomes, allowing for the identification of genetic variations that may influence a person's response to certain medications or susceptibility to specific diseases. This information can be used to tailor medical treatments to the individual's genetic profile.

Applications[edit]

Individualized medicine has applications in various fields of healthcare, including:

  • Pharmacogenomics: The study of how genes affect a person's response to drugs. This field aims to develop effective, safe medications and doses that are tailored to a person's genetic makeup.
  • Oncology: Personalized cancer treatment plans can be developed based on the genetic mutations present in a patient's tumor, allowing for targeted therapies that are more effective and have fewer side effects.
  • Cardiology: Genetic testing can help identify individuals at risk for certain heart conditions, allowing for early intervention and personalized treatment plans.
  • Infectious diseases: Understanding the genetic factors that influence susceptibility to infections can lead to more effective prevention and treatment strategies.

Challenges[edit]

Despite its potential, individualized medicine faces several challenges:

  • Ethical issues: The use of genetic information raises concerns about privacy, consent, and potential discrimination based on genetic data.
  • Cost: The cost of genetic testing and personalized treatments can be high, limiting accessibility for some patients.
  • Data management: The vast amount of genetic data generated requires sophisticated systems for storage, analysis, and interpretation.

Future Directions[edit]

The future of individualized medicine is promising, with ongoing research and technological advancements expected to further enhance its capabilities. The integration of artificial intelligence and machine learning in analyzing genetic data is anticipated to improve the accuracy and efficiency of personalized healthcare.

Related pages[edit]