Torsion group
Torsion group in the context of abstract algebra is a fundamental concept that plays a crucial role in the study of group theory, a branch of mathematics that deals with the algebraic structures known as groups. A torsion group is specifically related to the concept of torsion elements within a group. This article aims to elucidate the definition, properties, and examples of torsion groups, providing a comprehensive understanding of their significance in mathematical theory and applications.
Definition
A torsion group, also known as a periodic group, is a group in which every element has finite order. The order of an element g in a group G is the smallest positive integer n such that gn = e, where e is the identity element of the group. If no such n exists, the element is said to have infinite order. In a torsion group, all elements except the identity element have a finite order.
Formal Definition
Given a group G, it is called a torsion group if for every element g in G, there exists a positive integer n such that gn = e, where e is the identity element of G.
Examples
1. The cyclic group Zn, which consists of the integers modulo n under addition, is a torsion group because every element x in Zn satisfies x + n = x, indicating that every element has finite order n. 2. The group of roots of unity, which consists of all complex numbers z such that zn = 1 for some positive integer n, is a torsion group. Each element in this group has an order that divides n. 3. Finite groups, by definition, are torsion groups since the order of the group (and thus the order of any element within the group) is finite.
Properties
1. Closure under taking subgroups and quotients: If G is a torsion group, then any subgroup of G is also a torsion group. Similarly, any quotient group of G is a torsion group. 2. Direct products: The direct product of two torsion groups is also a torsion group. 3. Torsion-free groups: A group is called torsion-free if the only torsion element it contains is the identity element. The concept of torsion-free groups is the opposite of torsion groups.
Applications
Torsion groups find applications in various areas of mathematics, including algebraic topology, algebraic geometry, and number theory. For example, in algebraic topology, the study of torsion subgroups of the homology groups of a topological space can provide important information about the space's structure.
See Also
This article is a mathematics-related stub. You can help WikiMD by expanding it!
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD