Matter wave
Matter wave, also known as de Broglie wave, refers to the wave-like properties of particles. The concept is a central pillar of quantum mechanics, illustrating the fundamental idea that every particle or quantum entity may be partly described in terms of waves. This duality addresses the inability of classical concepts like "particle" and "wave" to fully describe the behavior of quantum-scale objects.
History[edit]
The concept of matter waves was first proposed by Louis de Broglie in 1924 in his PhD thesis. He suggested that just as light has both wave-like and particle-like properties, particles of matter also have wave-like characteristics. This hypothesis was revolutionary because it challenged the classical mechanics view that particles and waves are distinct phenomena. De Broglie's hypothesis was confirmed experimentally by the Davisson-Germer experiment in 1927, which observed the wave nature of electrons.
Theory[edit]
According to de Broglie, the wavelength (Wavelength) of a matter wave associated with a particle is inversely proportional to its momentum. This relationship is given by the de Broglie equation:
\[\lambda = \frac{h}{p}\]
where \(\lambda\) is the wavelength, \(h\) is Planck's constant, and \(p\) is the momentum of the particle. This equation implies that all matter exhibits wave-like properties, but the wave nature of larger objects is much harder to observe due to their small wavelengths.
Implications[edit]
The concept of matter waves has profound implications for the understanding of quantum mechanics. It is foundational for the development of wave-particle duality, a core principle of quantum mechanics that suggests particles can exhibit both particle and wave characteristics. Matter waves are also crucial for the formulation of Schrödinger's equation, which describes how the quantum state of a physical system changes over time.
Applications[edit]
Matter waves have applications in various technologies and scientific fields. For example, electron microscopy relies on the wave nature of electrons to achieve much higher resolution than is possible with conventional optical microscopes. Similarly, the principles of matter waves are applied in quantum computing and quantum cryptography, where they are used to process and secure information in ways that are not possible with classical systems.
See Also[edit]
- Quantum mechanics
- Wave-particle duality
- Davisson-Germer experiment
- Schrödinger's equation
- Planck's constant
-
Propagation of a de Broglie wave
-
Gaussian Dispersion
-
Original electron diffraction camera used by G P Thomson
-
G P Thomson Electron Diffraction
-
Electron buildup movie from "Controlled double-slit electron diffraction" Roger Bach et al 2013 New J. Phys. 15 033018
-
Infinite Square Well Animation
Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Weight loss injections in NYC (generic and brand names):
- Zepbound / Mounjaro, Wegovy / Ozempic, Saxenda
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $75 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointmentsNYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
