Conic section
(Redirected from Latus rectum)
Conic sections are the curves obtained as the intersection of the surface of a cone with a plane. The four basic types of conic sections are the parabola, ellipse, circle, and hyperbola. These shapes have been studied since ancient times and have important applications in mathematics, physics, engineering, and many other fields.
Definition
A conic section can be defined as the locus of all points \(P\) such that the distance from \(P\) to a fixed point, called the focus, is a constant multiple of the distance from \(P\) to a fixed line, called the directrix. The constant ratio is called the eccentricity (\(e\)), and it determines the type of conic section:
- If \(e=0\), the conic is a circle.
- If \(e<1\), the conic is an ellipse.
- If \(e=1\), the conic is a parabola.
- If \(e>1\), the conic is a hyperbola.
Equations
The general quadratic equation in two variables \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\), where \(A\), \(B\), \(C\), \(D\), \(E\), and \(F\) are constants, represents a conic section. The nature of the conic section can be determined by the discriminant \(B^2 - 4AC\):
- If \(B^2 - 4AC < 0\), the equation represents an ellipse or a circle.
- If \(B^2 - 4AC = 0\), the equation represents a parabola.
- If \(B^2 - 4AC > 0\), the equation represents a hyperbola.
Applications
Conic sections have numerous applications across various fields:
- In astronomy, the orbits of planets and comets are often described by conic sections, with the Sun at one of the foci.
- In optics, mirrors shaped like parts of a parabola can focus parallel rays of light to a single point, and ellipsoidal mirrors can focus light from one point to another.
- In architecture and engineering, the principles of conic sections are used in the design of structures such as bridges, domes, and arches for their aesthetic appeal and structural efficiency.
History
The study of conic sections can be traced back to ancient Greece, where mathematicians like Euclid and Apollonius of Perga laid the foundational work. Apollonius's work, "Conics," significantly advanced the understanding of these curves, introducing terms such as ellipse, parabola, and hyperbola.
See Also
This article is a mathematics-related stub. You can help WikiMD by expanding it!
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Contributors: Prab R. Tumpati, MD