Gravitational constant
Gravitational Constant (symbol: G) is a physical constant that plays a crucial role in the law of universal gravitation, which was first formulated by Isaac Newton. This constant is a measure of the strength of gravity between two objects. The value of the Gravitational Constant is approximately 6.674 × 10^−11 N⋅m²/kg².
Overview
The concept of the Gravitational Constant is foundational in physics, particularly in the field of classical mechanics. It enables the calculation of the gravitational force between two masses. According to Newton's law of universal gravitation, the force (F) between two masses (m1 and m2) separated by a distance (r) is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. The Gravitational Constant, G, is the proportionality constant in this equation:
\[F = G \frac{m_1 m_2}{r^2}\]
History
The Gravitational Constant was first introduced by Isaac Newton in 1687 in his seminal work, Philosophiæ Naturalis Principia Mathematica. However, the actual value of G was not measured until 1798 by Henry Cavendish using a torsion balance experiment. This experiment allowed for the calculation of the Earth's density and indirectly measured the Gravitational Constant.
Measurement
Measuring the Gravitational Constant has proven to be exceptionally challenging due to the weakness of the gravitational force compared to other fundamental forces. Various experiments over the years have yielded slightly differing values, leading to ongoing research to refine its measurement. The current accepted value, as recommended by the Committee on Data for Science and Technology (CODATA), is subject to periodic review as measurement techniques improve.
Significance
The Gravitational Constant is significant not only in the calculation of gravitational forces but also in understanding and predicting the orbits of planets, moons, and artificial satellites around larger bodies. It is also crucial in the study of astrophysics, cosmology, and black holes, as it helps in understanding the structure and evolution of the universe.
Challenges
One of the major challenges in the field of physics is the precise measurement of the Gravitational Constant. Its small value and the weakness of the gravitational force make it susceptible to experimental errors. Additionally, reconciling the gravitational force with quantum mechanics in a theory of quantum gravity remains an unresolved issue in modern physics.
See Also
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
 
 - Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
 
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
 - Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
 
| 
 WikiMD's Wellness Encyclopedia  | 
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates  | 
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian 
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Contributors: Prab R. Tumpati, MD