Feynman–Kac formula
Feynman–Kac Formula
The Feynman–Kac formula is a fundamental theorem in quantum mechanics and mathematical finance, providing a mathematical link between stochastic processes and partial differential equations (PDEs). Named after Richard Feynman and Mark Kac, this formula has become a cornerstone in the field of mathematical physics, particularly in the study of quantum field theory and the valuation of financial derivatives.
Overview
The Feynman–Kac formula offers a method to solve certain types of PDEs, specifically the parabolic PDEs, by converting them into an expectation value of a functional of a stochastic process. This approach is particularly useful in scenarios where direct solutions of the PDE are difficult to obtain. The formula essentially bridges the gap between deterministic processes, described by PDEs, and stochastic processes, described by Brownian motion and martingales.
Mathematical Formulation
Consider a parabolic PDE of the form:
\[ \frac{\partial u}{\partial t} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 u}{\partial x^2} + \mu(x,t) \frac{\partial u}{\partial x} - r(x,t)u = 0 \]
where \(u(x,t)\) is the unknown function to be solved for, \(\sigma(x,t)\) and \(\mu(x,t)\) are known functions representing the volatility and drift of the process, and \(r(x,t)\) is a known function representing the discount rate.
The Feynman–Kac formula states that the solution \(u(x,t)\) can be represented as the expected value of a certain functional of the stochastic process \(X_t\) that satisfies the stochastic differential equation (SDE):
\[ dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t \]
where \(W_t\) is a standard Wiener process. Specifically,
\[ u(x,t) = E\left[ e^{-\int_t^T r(X_s, s) ds} f(X_T) \mid X_t = x \right] \]
for some terminal condition \(f(X_T)\) at time \(T\).
Applications
- Quantum Mechanics
In quantum mechanics, the Feynman–Kac formula is used to solve the Schrödinger equation for a particle in a potential field. It provides a path integral formulation of quantum mechanics, offering a different perspective from the traditional wave function approach.
- Financial Mathematics
In financial mathematics, the formula is applied in the pricing of options and other financial derivatives. It allows for the valuation of options by modeling the underlying asset's price as a stochastic process and then computing the expected value of the option's payoff.
See Also
- Stochastic process
- Partial differential equation
- Brownian motion
- Martingale
- Quantum field theory
- Schrödinger equation
- Option
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD