Diphthine—ammonia ligase

From WikiMD's Wellness Encyclopedia

Diphthine—ammonia ligase is an enzyme that plays a crucial role in the biosynthesis of diphthamide, a unique post-translationally modified histidine residue found in eukaryotic translation elongation factor 2 (eEF-2). This modification is essential for the activity of eEF-2, which is involved in the translocation step of protein synthesis. The enzyme catalyzes the ATP-dependent addition of an ammonia molecule to diphthine, a precursor of diphthamide, resulting in the formation of diphthamide. This reaction is a key step in the diphthamide biosynthesis pathway, which is notable for its complexity and specificity.

Function[edit]

Diphthine—ammonia ligase functions in the final step of diphthamide biosynthesis. Diphthamide is critical for the protection of eEF-2 from inactivation by diphtheria toxin and related ADP-ribosylating toxins. These toxins target eEF-2 in susceptible cells, inhibiting protein synthesis and leading to cell death. The presence of diphthamide in eEF-2 is therefore essential for cellular resistance to these toxins.

Mechanism[edit]

The enzyme catalyzes the reaction in a two-step process. First, it activates the carboxylate group of diphthine using ATP, forming an acyl-phosphate intermediate. Subsequently, it mediates the nucleophilic attack of ammonia on this intermediate, resulting in the formation of diphthamide and the release of AMP and phosphate. This reaction is highly specific to diphthine and does not occur with other histidine residues in proteins.

Clinical Significance[edit]

Mutations in the gene encoding Diphthine—ammonia ligase have been linked to a rare genetic disorder characterized by developmental delays, short stature, and increased susceptibility to infections. This condition highlights the importance of diphthamide in normal cellular function and the potential consequences of its disruption.

Genetic and Molecular Biology[edit]

The gene for Diphthine—ammonia ligase is conserved across many eukaryotic species, underscoring the essential role of diphthamide in cellular biology. Studies on the structure and function of this enzyme contribute to our understanding of protein synthesis and the mechanisms by which cells defend against certain bacterial toxins.

See Also[edit]

References[edit]

<references/>


Stub icon
   This article is a enzyme-related stub. You can help WikiMD by expanding it!



Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD weight loss doctors team
W8MD weight loss doctors team

W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:

NYC weight loss doctor appointmentsNYC weight loss doctor appointments

Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.

Linkedin_Shiny_Icon Facebook_Shiny_Icon YouTube_icon_(2011-2013) Google plus


Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.