Coefficient of variation
Coefficient of Variation (CV) is a statistical measure of the dispersion of data points in a data series around the mean. It is defined as the ratio of the standard deviation (Standard deviation) to the mean (Mean), and it is often expressed as a percentage. The coefficient of variation is a useful statistic for comparing the degree of variation from one data series to another, even if the means are drastically different from each other.
Definition[edit]
The coefficient of variation (CV) is calculated using the formula:
- CV = (σ / μ) × 100%
where σ is the standard deviation of the dataset, and μ is the mean of the dataset. This formula is applicable for sample data. For a population data set, the population standard deviation and the population mean are used.
Applications[edit]
The coefficient of variation is widely used in various fields such as finance, investing, engineering, and science to analyze the variability of different datasets. In finance, for example, it is used to measure the risk per unit of return of an investment. In the field of laboratory medicine, it is used to assess the precision of assay methods. It is particularly useful when comparing the degree of variation between datasets with different units or vastly different means.
Advantages and Limitations[edit]
One of the main advantages of the coefficient of variation is its ability to facilitate comparisons between datasets. However, it should be noted that the CV is only meaningful for ratio-level variables where a true zero point exists. It is not suitable for use with interval-level variables, which lack a true zero point, such as temperature scales.
Additionally, the CV can be misleading when dealing with datasets that include negative values or values close to zero, as the mean can be very small, leading to a disproportionately high CV.
Related Statistical Measures[edit]
Other statistical measures related to the coefficient of variation include the Standard deviation, which measures the absolute variability of a dataset, and the mean, which provides a measure of the central tendency of the data. The Variance is another related measure, representing the average of the squared differences from the Mean.
See Also[edit]
References[edit]
<references/>

This article is a statistics-related stub. You can help WikiMD by expanding it!
Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Weight loss injections in NYC (generic and brand names):
- Zepbound / Mounjaro, Wegovy / Ozempic, Saxenda
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $75 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointmentsNYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian