Tensor rank decomposition: Difference between revisions

From WikiMD's Wellness Encyclopedia

CSV import
Tags: mobile edit mobile web edit
CSV import
 
Line 37: Line 37:
{{math-stub}}
{{math-stub}}
{{No image}}
{{No image}}
__NOINDEX__

Latest revision as of 03:00, 18 March 2025

Tensor rank decomposition, also known as canonical polyadic decomposition (CPD) or PARAFAC decomposition, is a form of tensor decomposition that generalizes the matrix singular value decomposition (SVD) to higher-order tensors. Tensor rank decomposition expresses a tensor as a sum of a finite number of rank-one tensors. This method is widely used in various fields such as signal processing, neuroscience, and data analysis, offering a powerful tool for the analysis of multi-way data.

Overview[edit]

A tensor is a multidimensional array, generalizing matrices to higher dimensions. The rank of a tensor, analogous to the rank of a matrix, is the minimum number of rank-one tensors that sum to the tensor. A rank-one tensor is a tensor that can be written as the outer product of vectors. Tensor rank decomposition aims to find such a representation, decomposing a given tensor into a sum of rank-one tensors.

Mathematical Formulation[edit]

Given a tensor \(T \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}\), the goal of tensor rank decomposition is to express \(T\) as a sum of \(R\) rank-one tensors, where \(R\) is the rank of \(T\). This can be written as:

\[T = \sum_{r=1}^R a_r^{(1)} \otimes a_r^{(2)} \otimes \cdots \otimes a_r^{(N)}\]

Here, \(a_r^{(n)}\) are vectors, and \(\otimes\) denotes the outer product. The smallest number \(R\) for which such a decomposition exists is called the tensor rank.

Applications[edit]

Tensor rank decomposition has found applications in various domains:

- In signal processing, it is used for blind source separation and analysis of multi-way signals. - In neuroscience, it helps in the analysis of brain imaging data to identify patterns of neural activity. - In data analysis and machine learning, it is employed for dimensionality reduction, data compression, and feature extraction.

Challenges[edit]

One of the main challenges in tensor rank decomposition is its computational complexity. The problem of finding the tensor rank is NP-hard, making exact decomposition infeasible for large tensors. Approximation algorithms and heuristics are commonly used to find near-optimal solutions.

Software and Tools[edit]

Several software packages and libraries offer implementations of tensor rank decomposition, including MATLAB's Tensor Toolbox, Python's TensorLy, and the R package rTensor.

See Also[edit]

References[edit]

<references />

Stub icon
   This article is a mathematics-related stub. You can help WikiMD by expanding it!