Maximum and minimum
(Redirected from Maximum)
Maximum and Minimum
In mathematics, the concepts of maximum and minimum are used to describe the largest and smallest values that a function can take, either within a given range (local extrema) or over its entire domain (global extrema). These concepts are fundamental in calculus and optimization, where they are used to find the optimal solutions to various problems.
Definitions
A function \( f(x) \) is said to have a global maximum at a point \( x = c \) if \( f(c) \geq f(x) \) for all \( x \) in the domain of \( f \). Similarly, \( f(x) \) has a global minimum at \( x = c \) if \( f(c) \leq f(x) \) for all \( x \) in the domain.
A local maximum occurs at \( x = c \) if there exists an interval \( (a, b) \) containing \( c \) such that \( f(c) \geq f(x) \) for all \( x \) in \( (a, b) \). A local minimum is defined analogously.
Finding Extrema
To find the extrema of a function, one typically uses the derivative of the function. The critical points, where the derivative is zero or undefined, are potential candidates for local extrema. The second derivative test can further classify these critical points.
First Derivative Test
The first derivative test involves analyzing the sign of the derivative before and after a critical point. If the derivative changes from positive to negative, the function has a local maximum at that point. If it changes from negative to positive, the function has a local minimum.
Second Derivative Test
The second derivative test uses the value of the second derivative at a critical point. If \( f(c) > 0 \), the function has a local minimum at \( c \). If \( f(c) < 0 \), the function has a local maximum. If \( f(c) = 0 \), the test is inconclusive.
Examples
Consider the function \( f(x) = x^3 - 3x^2 + 4 \). To find its extrema, we first find the derivative \( f'(x) = 3x^2 - 6x \). Setting \( f'(x) = 0 \) gives the critical points \( x = 0 \) and \( x = 2 \).
Using the second derivative \( f(x) = 6x - 6 \), we find \( f(0) = -6 \) (local maximum) and \( f(2) = 6 \) (local minimum).
Applications
The concepts of maximum and minimum are widely used in various fields such as economics, engineering, and physics. In economics, they help in finding the optimal production levels. In engineering, they are used in design optimization. In physics, they help in determining stable equilibrium points.
Related Concepts
Related Pages
Visual Representations
Visualizing functions and their extrema can provide intuitive insights into their behavior. Graphs and models are often used to illustrate these concepts.
Challenges and Counterexamples
Not all functions have extrema, and some functions may have points where traditional tests fail. For example, the function \( f(x) = x^{1/x} \) has a maximum at \( x = e \), but its behavior can be complex to analyze.
See Also
Transform your life with W8MD's budget GLP-1 injections from $125.
W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $125 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Contributors: Prab R. Tumpati, MD