File:Phase portrait of damped oscillator, with increasing damping strength.gif
Original file (1,800 × 1,200 pixels, file size: 19.36 MB, MIME type: image/gif, looped, 201 frames, 16 s)
Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionPhase portrait of damped oscillator, with increasing damping strength.gif |
English: ```python
import numpy as np import matplotlib.pyplot as plt from math import isclose from numpy import linalg as LA import matplotlib.cm as cm def plot_circle(v_1, v_2, ax, **kwargs): angles = np.linspace(0, 2*np.pi, 100) points = v_1[:,np.newaxis] * np.cos(angles) + v_2[:,np.newaxis] * np.sin(angles) ax.plot(points[0,:], points[1,:], **kwargs) def plot_vector_field(A, xmin=-5, xmax=5, ymin=-5, ymax=5, title=""): axx, axy = A[0,0], A[0,1] ayx, ayy = A[1,0], A[1,1] det = axx * ayy - axy * ayx tr = axx + ayy eigen_vals, eigen_vects = LA.eig(A) is_critical = abs(eigen_vals[0] - eigen_vals[1]) / abs(eigen_vals[0]) < 1e-2 delta = tr**2 - 4*det is_rotational = delta <= 0 and not is_critical # Initialize plotting object
fig, axes = plt.subplot_mosaic("133;233", figsize=(18,12))
colormap=cm.viridis
# pole-zero plot ax = axes['1'] ax.scatter(eigen_vals[0].real, eigen_vals[0].imag, color=colormap(eigen_vals[0].real)) ax.scatter(eigen_vals[1].real, eigen_vals[1].imag, color=colormap(eigen_vals[1].real)) r = np.sqrt(abs(eigen_vals[0] * eigen_vals[1])) plot_circle(np.array([r, 0]), np.array([0, r]), ax, color='k', alpha=0.3) ax.plot([xmin, xmax], np.zeros(2), color='k', alpha=0.2)
ax.plot(np.zeros(2), [ymin, ymax], color='k', alpha=0.2)
ax.set_aspect('equal')
ax.set_xlim([-2, 2])
ax.set_ylim([-2, 2])
ax.set_xlabel('Real')
ax.set_ylabel('Imag')
ax.set_title('pole-zero plot')
# stability plot
ax = axes['2']
xs = np.linspace(xmin, xmax, 100)
ys = xs**2 / 4
ax.plot(xs, ys)
ax.scatter(tr, det, color='red')
ax.plot([xmin, xmax], np.zeros(2), color='k', alpha=0.2)
ax.plot(np.zeros(2), [ymin, ymax], color='k', alpha=0.2)
ax.set_aspect('equal')
ax.set_xlim([-4,2])
ax.set_ylim([-1, 5])
ax.set_xlabel('Tr(A)')
ax.set_ylabel('Det(A)')
ax.set_title('stability plot')
# vector field plot ax = axes['3'] x, y = np.meshgrid(np.linspace(xmin, xmax, 10), np.linspace(ymin, ymax, 10)) vx = axx * x + axy * y vy = ayx * x + ayy * y ax.quiver(x,y, vx, vy, units='xy', scale=6, color='g', headwidth=3, width=0.04)
# Plot the circle, or fast and slow manifolds
if is_rotational:
v_1 = np.array(eigen_vects[:,0].real)
v_2 = np.array(eigen_vects[:,0].imag)
# normalize
radius = (xmax - xmin) / 4
norm = max(np.linalg.norm(v_1), np.linalg.norm(v_2)) / radius
v_1 /= norm
v_2 /= norm
plot_circle(v_1, v_2, ax, color=colormap(eigen_vals[0].real))
elif is_critical:
v_1 = eigen_vects[:,0]
length = (xmax - xmin) * 2
lengths = np.linspace(-length, length, 100)
points = v_1[:,np.newaxis] * lengths
ax.plot(points[0,:], points[1,:], color=colormap(eigen_vals[0]))
else:
v_1 = eigen_vects[:,0]
v_2 = eigen_vects[:,1]
length = (xmax - xmin) * 2
lengths = np.linspace(-length, length, 100)
points = v_1[:,np.newaxis] * lengths
ax.plot(points[0,:], points[1,:], color=colormap(eigen_vals[0]))
points = v_2[:,np.newaxis] * lengths
ax.plot(points[0,:], points[1,:], color=colormap(eigen_vals[1]))
ax.plot([xmin, xmax], np.zeros(2), color='k', alpha=0.2)
ax.plot(np.zeros(2), [ymin, ymax], color='k', alpha=0.2)
ax.set_aspect('equal')
ax.set_xlim([xmin, xmax])
ax.set_ylim([ymin, ymax])
ax.set_xlabel('$x$')
ax.set_ylabel('$\\dot{x}$')
ax.set_title('phase portrait')
fig.suptitle(title)
fig.tight_layout()
return fig
import tempfile import os import imageio plt.rc('figure', titlesize=16) with tempfile.TemporaryDirectory() as temp_dir: n_frames = 201
omegas = [1.0] * n_frames
gammas = (1-np.cos(np.linspace(0, np.pi, n_frames//2)))/2
gammas = list(gammas) + [gammas[-1]] + list(gammas + 1)
for i in range(n_frames):
omega = omegas[i]
gamma = gammas[i]
operator_A = np.array([[0, 1], [-omega**2, -2*gamma]])
fig = plot_vector_field(operator_A, title=f"$\\ddot x + 2\\gamma \\dot x + \\omega^2x = 0$,\n$\\omega = {omega:1.1f}$, $\\gamma = {gamma:0.3f}$")
filename = os.path.join(temp_dir, f"plot_{i:03d}.png")
fig.savefig(filename)
plt.close(fig)
# Compile images into GIF
fps = 12
images = []
for i in range(n_frames):
filename = os.path.join(temp_dir, f"plot_{i:03d}.png")
images.append(imageio.v2.imread(filename))
imageio.mimsave(f"phase_portrait_omega_{omega:1.1f}.gif", images, duration=1/fps)
``` |
| Date | |
| Source | Own work |
| Author | Cosmia Nebula |
Licensing
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Captions
Items portrayed in this file
depicts
some value
4 April 2023
image/gif
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:24, 5 April 2023 | 1,800 × 1,200 (19.36 MB) | Cosmia Nebula | Uploaded own work with UploadWizard |
File usage
The following 2 pages use this file: