Vector space






Vector space is a fundamental concept in mathematics, particularly in the fields of linear algebra and abstract algebra. It provides a framework for studying various algebraic structures and is widely applicable in areas such as physics, engineering, and computer science.
Definition[edit]
A vector space over a field F consists of a set V along with two operations: vector addition and scalar multiplication. The elements of V are called vectors, and the elements of F are called scalars. For V to be a vector space, the following conditions must be satisfied for all vectors u, v, and w in V, and all scalars a and b in F:
1. Vector addition is commutative: u + v = v + u. 2. Vector addition is associative: (u + v) + w = u + (v + w). 3. There exists an element 0 in V, called the zero vector, such that u + 0 = u for all u in V. 4. For each u in V, there exists an element -u in V, called the additive inverse of u, such that u + (-u) = 0. 5. Scalar multiplication is distributive with respect to vector addition: a(u + v) = a'u + a'v. 6. Scalar multiplication is distributive with respect to field addition: (a + b)u = a'u + b'u. 7. Scalar multiplication is associative with respect to field multiplication: a(b'u) = (a'b)u. 8. Multiplication by 1 (the multiplicative identity in F) leaves vectors unchanged: 1u = u.
Examples[edit]
1. The set of all two-dimensional vectors (x, y), where x and y are real numbers, forms a vector space over the field of real numbers with the usual operations of vector addition and scalar multiplication. 2. The set of all n-tuples of real numbers is a vector space over the real numbers. 3. The set of all polynomials with coefficients in F forms a vector space over F.
Basis and Dimension[edit]
A basis of a vector space V is a set of vectors in V that is linearly independent and spans V. The dimension of V is the number of vectors in a basis of V, which is a well-defined quantity.
Subspaces[edit]
A subspace of a vector space V is a subset W of V that itself forms a vector space under the operations of vector addition and scalar multiplication defined on V.
Linear Transformations[edit]
A linear transformation is a function between two vector spaces that preserves the operations of vector addition and scalar multiplication.
Applications[edit]
Vector spaces are used in various scientific fields. In physics, they are used to describe physical quantities such as forces and velocities. In computer science, they are used in algorithms and data structures, particularly those involving graphics and machine learning.

This article is a mathematics-related stub. You can help WikiMD by expanding it!
Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Weight loss injections in NYC (generic and brand names):
- Zepbound / Mounjaro, Wegovy / Ozempic, Saxenda
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $75 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointmentsNYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian