Uranium-233




Uranium-233 (U-233) is a fissile material and a nuclear fuel that has been used in nuclear reactors and proposed for use in various nuclear weapons. It is produced through the neutron irradiation of Thorium-232, which absorbs a neutron and undergoes two beta decays to become Uranium-233. This process is part of the Thorium fuel cycle, an alternative nuclear fuel technology that has garnered interest for its potential benefits over the more commonly used Uranium-235 and Plutonium-239 fuel cycles.
Production[edit]
The production of Uranium-233 begins with the neutron bombardment of Thorium-232, typically in a nuclear reactor. Thorium-232 captures a neutron to become Thorium-233, which quickly decays into Protactinium-233 through beta decay. Protactinium-233 itself decays into Uranium-233 over a period of about 27 days. This process requires careful management to ensure that the Protactinium-233 does not capture another neutron before it decays, as this would produce undesirable isotopes.
Characteristics[edit]
Uranium-233 has several notable characteristics that make it of interest for nuclear power and weapons applications. It has a high fission cross section for thermal neutrons, making it an efficient fuel in thermal-neutron reactors. Additionally, U-233 can be used to breed more fissile material from Thorium-232, potentially offering a more sustainable nuclear fuel cycle compared to those based on Uranium-235 and Plutonium-239.
Applications[edit]
- Nuclear Reactors
Uranium-233 has been used as fuel in several types of nuclear reactors, including light water reactors (LWRs), heavy water reactors (HWRs), and high-temperature gas-cooled reactors (HTGRs). Its use in these reactors demonstrates the versatility of U-233 as a fuel source, capable of operating in different reactor designs and conditions.
- Nuclear Weapons
Due to its fissile nature, Uranium-233 has also been considered for use in nuclear weapons. However, the presence of Uranium-232, a contaminant produced alongside U-233, poses challenges due to its strong gamma radiation, which complicates weapon handling and manufacturing.
Safety and Regulation[edit]
The handling and storage of Uranium-233 require strict safety protocols due to its radioactivity and potential for criticality accidents. Regulatory frameworks govern its production, use, and disposal to minimize risks to workers, the public, and the environment.
Future Prospects[edit]
Interest in the Thorium fuel cycle and Uranium-233 as a nuclear fuel has fluctuated over the years. Its potential for lower nuclear waste production, greater fuel efficiency, and proliferation resistance compared to traditional nuclear fuels makes it a subject of ongoing research and development.
| This article is a stub. You can help WikiMD by registering to expand it. |
Ad. Transform your life with W8MD's Budget GLP-1 injections from $75


W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Weight loss injections in NYC (generic and brand names):
- Zepbound / Mounjaro, Wegovy / Ozempic, Saxenda
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $75 for the starting dose.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointmentsNYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian