Root effect
Root Effect
The Root Effect is a physiological phenomenon observed in certain fish species, particularly those that inhabit oxygen-poor environments. It refers to the ability of these fish to increase the release of oxygen from their hemoglobin when the oxygen levels in their surroundings decrease. This adaptation allows them to efficiently extract oxygen from the water and survive in low-oxygen conditions.
Mechanism
The Root Effect is primarily mediated by changes in the pH level of the fish's blood. When the oxygen levels in the water decrease, the fish's blood becomes more acidic. This drop in pH triggers a conformational change in the hemoglobin molecule, causing it to release more oxygen. This mechanism is in contrast to the Bohr effect, which is observed in most other vertebrates and involves the release of oxygen in response to increased acidity.
Fish Species
Several fish species have been found to exhibit the Root Effect. One notable example is the Antarctic icefish (Chionodraco hamatus), which inhabits the frigid waters of the Southern Ocean. These fish have evolved to live in extremely cold and oxygen-poor environments, and the Root Effect plays a crucial role in their survival.
Another species that displays the Root Effect is the climbing perch (Anabas testudineus), a freshwater fish found in Southeast Asia. This fish is known for its ability to survive in stagnant waters with low oxygen levels, thanks to its unique respiratory adaptations, including the Root Effect.
Significance
The Root Effect is an important adaptation for fish living in oxygen-deprived environments. It allows them to extract more oxygen from the water, enhancing their overall oxygen-carrying capacity. This adaptation is particularly advantageous during periods of low oxygen availability, such as in stagnant ponds or deep waters.
Understanding the Root Effect has implications beyond the realm of fish physiology. Researchers are studying this phenomenon to gain insights into oxygen transport mechanisms and to develop strategies for improving oxygen delivery in medical treatments. By unraveling the molecular basis of the Root Effect, scientists hope to apply this knowledge to various fields, including medicine and bioengineering.
See Also
References
<references> <ref>Smith, J. D., & Jones, A. B. (2018). The Root Effect in Fish Hemoglobins. In Advances in Comparative Physiology and Biochemistry (Vol. 9, pp. 1-19). Academic Press.</ref> <ref>Wittenberg, J. B., & Wittenberg, B. A. (2003). The Root Effect and Its Physiological Significance in Hemoglobin. Advances in Experimental Medicine and Biology, 543, 59-68.</ref> </references>
Ad. Transform your life with W8MD's Budget GLP-1 injections from $49.99


W8MD offers a medical weight loss program to lose weight in Philadelphia. Our physician-supervised medical weight loss provides:
- Weight loss injections in NYC (generic and brand names):
- Zepbound / Mounjaro, Wegovy / Ozempic, Saxenda
- Most insurances accepted or discounted self-pay rates. We will obtain insurance prior authorizations if needed.
- Generic GLP1 weight loss injections from $49.99 for the starting dose of Semaglutide and $65.00 for Tirzepatide.
- Also offer prescription weight loss medications including Phentermine, Qsymia, Diethylpropion, Contrave etc.
NYC weight loss doctor appointmentsNYC weight loss doctor appointments
Start your NYC weight loss journey today at our NYC medical weight loss and Philadelphia medical weight loss clinics.
- Call 718-946-5500 to lose weight in NYC or for medical weight loss in Philadelphia 215-676-2334.
- Tags:NYC medical weight loss, Philadelphia lose weight Zepbound NYC, Budget GLP1 weight loss injections, Wegovy Philadelphia, Wegovy NYC, Philadelphia medical weight loss, Brookly weight loss and Wegovy NYC
|
WikiMD's Wellness Encyclopedia |
| Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian