Newton's laws of motion: Difference between revisions

From WikiMD's Wellness Encyclopedia

CSV import
Tags: mobile edit mobile web edit
 
CSV import
Tags: mobile edit mobile web edit
 
Line 32: Line 32:


{{Physics-stub}}
{{Physics-stub}}
== Newton's laws of motion ==
<gallery>
File:Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg|Skylab and Earth Limb
File:Free_body1.3.svg|Free body diagram
File:Iridium-1_Launch_(32312419215).jpg|Iridium-1 Launch
File:Bouncing_ball_strobe_edit.jpg|Bouncing ball strobe
File:Binary_system_orbit_q=3_e=0.gif|Binary system orbit
File:Animated-mass-spring.gif|Animated mass spring
File:Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg|Space Shuttle Atlantis launches from KSC on STS-132
File:Newtonssailboat.jpg|Newton's sailboat
File:Masocentro1.jpg|Center of mass
File:Three-body_Problem_Animation.gif|Three-body Problem Animation
File:Demonstrating_Chaos_with_a_Double_Pendulum.gif|Demonstrating Chaos with a Double Pendulum
File:Noether.jpg|Noether
</gallery>

Latest revision as of 21:13, 23 February 2025

Newton's Laws of Motion are three physical laws that together lay the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. These laws have been expressed in several different ways over nearly three centuries, and can be summarized as follows:

First Law: Law of Inertia[edit]

The First Law, also known as the Law of Inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. This law implies that it is the natural state of an object to keep on doing what it's already doing, unless a force is applied to change its direction or speed.

Second Law: Law of Acceleration[edit]

The Second Law defines the relationship between an object's mass, the forces acting upon it, and its acceleration. It can be formulated as F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration. This law indicates that the force needed to accelerate an object is directly proportional to the mass of the object and the acceleration desired.

Third Law: Law of Action and Reaction[edit]

The Third Law states that for every action, there is an equal and opposite reaction. This means that whenever an object exerts a force on a second object, the second object exerts a force of equal magnitude and in the opposite direction on the first object.

Applications and Importance[edit]

Newton's Laws of Motion have wide-ranging implications and applications in physics and engineering. They are fundamental in understanding phenomena in mechanics, from the motion of celestial bodies to the dynamics of everyday objects.

Historical Context[edit]

Sir Isaac Newton first presented his three laws of motion in the "Principia Mathematica Philosophiae Naturalis" in 1687. They were revolutionary at the time, providing a framework that could explain both terrestrial and celestial phenomena. Newton's laws superseded previous theories of motion, such as those proposed by Aristotle and Galileo.

Limitations[edit]

While Newton's Laws of Motion are sufficient for many practical purposes, they do not hold in all situations. With the advent of Einstein's theory of relativity and the development of quantum mechanics, the limitations of Newton's laws became apparent. They are not applicable at very high speeds or at the atomic and subatomic levels. However, for everyday phenomena and engineering applications, Newton's laws provide an accurate and useful description of motion.

See Also[edit]


Stub icon
   This article is a physics-related stub. You can help WikiMD by expanding it!



Newton's laws of motion[edit]